-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
executable file
·335 lines (283 loc) · 13.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#!/usr/bin/env python
import argparse
import datetime
import models, trainer_fcn, trainer_seenmask
import os
import os.path as osp
import pascal_dataset, context_dataset
import pytz
import torch
import torch.nn as nn
import yaml
from configs import configurations
from tensorboardX import SummaryWriter
def main():
parser = argparse.ArgumentParser()
# default value args
parser.add_argument('-n', '--name', type=str, default=None, help='name of checkpoint folder')
parser.add_argument('-g', '--gpu', type=int, default=0, help='gpu number; -1 for cpu')
parser.add_argument('-c', '--config', type=int, default=1, choices=configurations.keys())
parser.add_argument("-dir", "--data_dir", type=str, default='/opt/visualai/rkdoshi/ZeroshotSemanticSegmentation', help='path for storing dataset, logs, and models')
parser.add_argument("-tb", "--tb_dir", type=str, default='/opt/visualai/rkdoshi/ZeroshotSemanticSegmentation/tb', help='path to tensorboard directory')
# override cfg args
parser.add_argument('-m', '--mode', type=str, choices=['train', 'test_fcn', 'test_all'], help='choose among five training/testing mode choices')
parser.add_argument("-d", "--dataset", type=str, choices=['pascal', 'context'], help='dataset name')
parser.add_argument('-tu', '--train_unseen', type=str, help='delimited list input for zero-shot train split unseen classes')
parser.add_argument('-vu', '--val_unseen', type=str, help='delimited list input for zero-shot val split unseen classes')
parser.add_argument('-e', '--embed_dim', type=int, choices=[2, 5, 10, 20, 21, 50, 100, 200, 300], help='dimensionality of joint embeddings space')
parser.add_argument('-ve', '--fcn_epochs', type=int, help='maximum number of training epochs for FCN')
parser.add_argument('-lr', '--fcn_learning_rate', type=float, help='FCN\'s learning rate')
parser.add_argument('-loss', '--fcn_loss', type=str, choices=['cos','mse', 'cross_entropy'], help='FCN training loss function if using embeddings')
parser.add_argument('-o', '--fcn_optim', type=str, choices=['sgd','adam'], help='optimizer for updating FCN model')
parser.add_argument('-se', '--seenmask_epochs', type=int, help='max number of training epochs for the seenmask classifier')
parser.add_argument('-slr', '--seenmask_learning_rate', type=float, help='seenmask layer learning rate')
# update optional cfg arg
parser.add_argument('-oh', '--one_hot_embed', help='make embeddings one-hot embeddings for updating model', action='store_true')
parser.add_argument('-fu', '--forced_unseen', help='only predict along unseen classes for unseen pixel during val', action='store_true')
parser.add_argument('-r', '--resume', type=str, help='fcn model checkpoint path')
# parse args and update cfg
args = parser.parse_args()
name, gpu, cfg, data_dir, tb_dir = args.name, args.gpu, configurations[args.config], args.data_dir, args.tb_dir # extract default value args
cfg = update_cfg_with_args(cfg, args)
validate_cfg(cfg)
# initialize logging and tensorboard writer
log_dir = get_log_dir(name, args.config, cfg, data_dir)
run_name = log_dir.split('/')[-1]
tb_path = osp.join(tb_dir, run_name)
tb_writer = SummaryWriter(tb_path)
output_cfg(cfg, log_dir, tb_writer)
# initialize CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
cuda = torch.cuda.is_available()
if cuda == -1:
cuda=False
torch.manual_seed(1337)
if cuda:
torch.cuda.manual_seed(1337)
# 1. dataset
kwargs = {'val_unseen': cfg['val_unseen'], 'transform': True, 'embed_dim': cfg['embed_dim'], 'one_hot_embed': cfg['one_hot_embed'], 'data_dir': data_dir}
if cfg['dataset'] == "pascal":
pascal_dataset.download(data_dir)
train_dataset = pascal_dataset.PascalVOC(split='train', **kwargs)
train_seen_dataset = pascal_dataset.PascalVOC(split='train_seen', train_unseen=cfg['train_unseen'], **kwargs)
val_dataset = pascal_dataset.PascalVOC(split='val', **kwargs)
elif cfg['dataset'] == "context":
context_dataset.download(data_dir)
train_dataset = context_dataset.PascalContext(split='train', **kwargs)
train_seen_dataset = context_dataset.PascalContext(split='train_seen', train_unseen=cfg['train_unseen'], **kwargs)
val_dataset = context_dataset.PascalContext(split='val', **kwargs)
kwargs = {'num_workers': 8, 'pin_memory': True} if cuda else {}
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=True, **kwargs)
train_seen_loader = torch.utils.data.DataLoader(train_seen_dataset, batch_size=1, shuffle=True, **kwargs) # TODO: add val_unseen to everything
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1, shuffle=False, **kwargs)
label_names = train_dataset.class_names
# output tb/log counts on train_seen, train_unseen, val
n_train_seen = str(len(train_seen_loader))
n_train_unseen = str(len(train_loader) - len(train_seen_loader))
n_val = str(len(val_loader))
tb_writer.add_text('num/train_seen', n_train_seen)
tb_writer.add_text('num/train_unseen', n_train_unseen)
tb_writer.add_text('num/val', n_val)
if not osp.exists(osp.join(log_dir, 'counts.csv')):
with open(osp.join(log_dir, 'counts.csv'), 'w') as f:
f.write(','.join(['train_seen', 'train_unseen', 'val']) + '\n')
f.write(','.join([n_train_seen, n_train_unseen, n_val]) + '\n')
# 2. model
if cfg['embed_dim']:
model = models.FCN32s(n_class=cfg['embed_dim'])
else:
model = models.FCN32s(n_class=21)
start_epoch = 0
start_iteration = 0
# load fcn with saved weights
checkpoint = None
if cfg['load_fcn_path']:
load_path = osp.join(data_dir, 'logs', cfg['load_fcn_path'], 'best')
checkpoint = torch.load(load_path)
model.load_state_dict(checkpoint['model_state_dict'], strict=False) # strict is False for backwards compatibility
start_epoch = checkpoint['epoch']
start_iteration = checkpoint['iteration']
# initialize fcn with vgg weights
else:
vgg16 = models.VGG16(pretrained=True, data_dir=data_dir)
model.copy_params_from_vgg16(vgg16)
if cuda:
model = model.cuda()
# 3. fcn optimizer and trainer
if cfg['fcn_optim'] == "sgd":
params = [{'params': get_parameters(model, bias=False)},
{'params': get_parameters(model, bias=True), 'lr': cfg['fcn_lr'] * 2, 'weight_decay': 0}] # conv2d bias
optim = torch.optim.SGD(params, lr=cfg['fcn_lr'], momentum=.99, weight_decay=0.0005)
elif cfg['fcn_optim'] == "adam":
params = [{'params': get_parameters(model, bias=False)},
{'params': get_parameters(model, bias=True), 'lr': cfg['fcn_lr'] * 2}] # conv2d bias
optim = torch.optim.Adam(params, lr=cfg['fcn_lr'])
if cfg['load_fcn_path']:
optim.load_state_dict(checkpoint['optim_state_dict'])
# train fcn
all_unseen = cfg['train_unseen'] + cfg['val_unseen']
fcn_trainer = trainer_fcn.Trainer(
cuda=cuda,
model=model,
optimizer=optim,
train_loader=train_seen_loader,
val_loader=val_loader,
log_dir=log_dir,
dataset=cfg['dataset'],
max_epoch=cfg['fcn_epochs'],
pixel_embeddings=cfg['embed_dim'],
loss_func=cfg['fcn_loss'],
tb_writer=tb_writer,
unseen=all_unseen,
val_unseen=cfg['val_unseen'],
label_names=label_names,
forced_unseen=cfg['forced_unseen'],
)
fcn_trainer.epoch, fcn_trainer.iteration = start_epoch, start_iteration
if cfg['mode'] == 'train':
if cfg['fcn_epochs'] > 0:
fcn_trainer.train()
# 4. train seenmask
if cfg['seenmask_epochs'] > 0:
# fix fcn's VGG weights. learn final linear layer mapping fc7 to seenmask
for param in model.parameters():
param.requires_grad = False
for p in model.seenmask_score.parameters():
p.requires_grad = True
for p in model.seenmask_upscore.parameters():
p.requires_grad = True
# optimizer
params = [{'params': get_parameters(model, seenmask=True)}]
optim = torch.optim.Adam(params, lr=cfg['seenmask_lr'])
if not checkpoint:
load_path = osp.join(data_dir, 'logs', run_name, 'best')
checkpoint = torch.load(load_path)
seenmask_trainer = trainer_seenmask.Trainer(
cuda=cuda,
model=model,
optimizer=optim,
train_loader=train_loader,
val_loader=val_loader,
log_dir=log_dir,
dataset=cfg['dataset'],
max_epoch=cfg['seenmask_epochs'],
tb_writer=tb_writer,
checkpoint=checkpoint,
unseen=cfg['train_unseen'],
)
seenmask_trainer.train()
# 5. test
elif cfg['mode'] == 'test_fcn':
fcn_trainer.validate(both_fcn_and_seenmask=False)
elif cfg['mode'] == 'test_all':
fcn_trainer.validate(both_fcn_and_seenmask=True)
def update_cfg_with_args(cfg, args):
# override cfg
if args.mode:
cfg['mode'] = args.mode
if args.dataset:
cfg['dataset'] = args.dataset
if args.train_unseen:
cfg['train_unseen'] = [int(item) for item in args.train_unseen.split(',')]
if args.val_unseen:
cfg['val_unseen'] = [int(item) for item in args.val_unseen.split(',')]
if args.embed_dim:
cfg['embed_dim'] = args.embed_dim
if args.fcn_epochs:
cfg['fcn_epochs'] = args.fcn_epochs
if args.fcn_learning_rate:
cfg['fcn_lr'] = args.fcn_learning_rate
if args.fcn_loss:
cfg['fcn_loss'] = args.fcn_loss
if args.fcn_optim:
cfg['fcn_optim'] = args.fcn_optim
if args.seenmask_learning_rate:
cfg['seenmask_lr'] = args.seenmask_learning_rate
# update optional cfg arg; ensure all cfg fields have default value if no arg given
cfg['one_hot_embed'] = args.one_hot_embed if args.one_hot_embed else cfg.get('one_hot_embed')
cfg['forced_unseen'] = args.forced_unseen if args.forced_unseen else cfg.get('forced_unseen')
cfg['load_fcn_path'] = args.resume if args.resume else cfg.get('load_fcn_path')
return cfg
def validate_cfg(cfg):
# TODO: add more
if cfg['one_hot_embed'] and cfg['embed_dim'] != 21 and cfg['dataset'] == "pascal":
raise Exception('joint-embedding space must be size of one-hot embedding space')
if cfg['one_hot_embed'] and cfg['embed_dim'] != 33 and cfg['dataset'] == "context":
raise Exception('joint-embedding space must be size of one-hot embedding space')
if cfg['mode'] in ['test_fcn', 'test_all'] and not cfg['load_fcn_path']:
raise Exception('must load model path via -r flag for test mode')
if cfg['fcn_epochs'] < 1 and not cfg['load_fcn_path']:
raise Exception('must load model path via -r flag for test mode')
if cfg['seenmask_epochs'] > 0 and len(cfg['train_unseen']) < 1:
raise Exception("can't train the seenmask classifier without train_unseen specified")
if cfg['embed_dim'] == 0 and cfg['fcn_loss'] in ['cos', 'mse']:
raise Exception("invalid loss function because pixel embedding dimensionality not defined")
def get_log_dir(model_name, cfg_num, cfg, data_dir):
if not os.path.exists(data_dir):
os.makedirs(data_dir)
if model_name:
name = '%s_' % model_name
else:
name = ''
name += "CFG_%d_" % int(cfg_num)
for k, v in cfg.items():
# ignore optional arguments...
if k in ['one_hot_embed','forced_unseen'] and not v:
continue
elif k == 'load_fcn_path':
continue
elif k in ['train_unseen', 'val_unseen']:
if v:
name += '%s_%s_' % (k.upper(), str(True))
else:
name += '%s_%s_' % (k.upper(), str(False))
else:
name += '%s_%s_' % (k.upper(), str(v))
now = datetime.datetime.now(pytz.timezone('US/Eastern'))
name += 'TIME_%s_' % now.strftime('%Y%m%d-%H%M%S')
log_dir = osp.join(data_dir, 'logs', name)
if not osp.exists(log_dir):
os.makedirs(log_dir)
return log_dir
def output_cfg(cfg, log_dir, writer):
# print cfg to stdout
for k, v in cfg.items():
print(k, v)
# write cfg to yaml log
with open(osp.join(log_dir, 'config.yaml'), 'w') as f:
yaml.safe_dump(cfg, f, default_flow_style=False)
# write cfg to tensorboard
cfg_str = '\n'.join(['%s: %s'%(k, str(v)) for k,v in cfg.items()])
writer.add_text("cfg", cfg_str)
def get_parameters(model, bias=False, seenmask=False):
if seenmask:
for p in model.seenmask_score.parameters():
yield p
for p in model.seenmask_upscore.parameters():
yield p
else:
modules_skipped = (
nn.ReLU,
nn.MaxPool2d,
nn.Dropout2d,
nn.Sequential,
models.FCN32s,
)
for name, m in model.named_modules():
if name in ['seenmask_score', 'seenmask_upscore']:
continue
if isinstance(m, nn.Conv2d):
if bias:
yield m.bias
else:
yield m.weight
elif isinstance(m, nn.ConvTranspose2d):
# weight is frozen because it is just a bilinear upmodule_list.extendsampling
if bias:
assert m.bias is None
elif isinstance(m, modules_skipped):
continue
else:
raise ValueError('Unexpected module: %s' % str(m))
if __name__ == '__main__':
main()