-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess.py
99 lines (95 loc) · 3.31 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import torch
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from shared.dataset import ShakeSpeare
def use_device(args):
use_cuda = not args.no_cuda and torch.cuda.is_available()
use_mps = not args.no_mps and torch.backends.mps.is_available()
if use_cuda:
device = torch.device("cuda")
print("------ Using cuda ------")
elif use_mps:
device = torch.device("mps")
print("------ Using mps ------")
else:
device = torch.device("cpu")
print("------ Using cpu ------")
return device
def preprocess(args):
use_cuda = not args.no_cuda and torch.cuda.is_available()
current_loc = os.path.dirname(os.path.abspath(__file__))
if args.dataset == "mnist":
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
)
train_dataset = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform
)
test_dataset = torchvision.datasets.MNIST(
root="./data", train=False, download=True, transform=transform
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.test_batch_size,
)
elif args.dataset == "fashion":
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)
train_dataset = datasets.FashionMNIST(
os.path.join(current_loc, "data", "fashion-mnist"),
train=True,
download=True,
transform=transform,
)
test_dataset = datasets.FashionMNIST(
os.path.join(current_loc, "data", "fashion-mnist"),
train=False,
download=True,
transform=transform,
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.test_batch_size,
shuffle=True,
)
elif args.dataset == "cifar10":
transform = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
(0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
),
]
)
train_dataset = datasets.CIFAR10(
os.path.join(current_loc, "data", "cifar10"),
train=True,
transform=transform,
download=True,
)
test_dataset = datasets.CIFAR10(
os.path.join(current_loc, "data", "cifar10"),
train=False,
transform=transform,
download=True,
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.test_batch_size,
)
elif args.dataset == "shakespeare":
train_dataset = ShakeSpeare(train=True)
test_dataset = ShakeSpeare(train=False)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.test_batch_size,
shuffle=False,
)
else:
raise Exception(f"Dataset {args.dataset} is not supported")
return train_dataset, test_loader, use_device(args)