-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathslid.py
211 lines (170 loc) · 6.05 KB
/
slid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# My implementation of the SLID module from
# https://github.com/maciejczyzewski/neural-chessboard/
from typing import Tuple
import numpy as np
import cv2
arr = np.array
# Four parameters are taken from the original code and
# correspond to four possible cases that need correction:
# low light, overexposure, underexposure, and blur
CLAHE_PARAMS = [[3, (2, 6), 5], # @1
[3, (6, 2), 5], # @2
[5, (3, 3), 5], # @3
[0, (0, 0), 0]] # EE
def slid_clahe(img, limit=2, grid=(3, 3), iters=5):
"""repair using CLAHE algorithm (adaptive histogram equalization)"""
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
for i in range(iters):
img = cv2.createCLAHE(clipLimit=limit,
tileGridSize=grid).apply(img)
if limit != 0:
kernel = np.ones((10, 10), np.uint8)
img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
return img
def slid_detector(img, alfa=150, beta=2):
"""detect lines using Hough algorithm"""
__lines, lines = [], cv2.HoughLinesP(img, rho=1, theta=np.pi/360*beta,
threshold=40, minLineLength=50, maxLineGap=15) # [40, 40, 10]
if lines is None:
return []
for line in np.reshape(lines, (-1, 4)):
__lines += [[[int(line[0]), int(line[1])],
[int(line[2]), int(line[3])]]]
return __lines
def slid_canny(img, sigma=0.25):
"""apply Canny edge detector (automatic thresh)"""
v = np.median(img)
img = cv2.medianBlur(img, 5)
img = cv2.GaussianBlur(img, (7, 7), 2)
lower = int(max(0, (1.0 - sigma) * v))
upper = int(min(255, (1.0 + sigma) * v))
return cv2.Canny(img, lower, upper)
def pSLID(img, thresh=150):
"""find all lines using different settings"""
segments = []
i = 0
for key, arr in enumerate(CLAHE_PARAMS):
tmp = slid_clahe(img, limit=arr[0], grid=arr[1], iters=arr[2])
curr_segments = list(slid_detector(slid_canny(tmp), thresh))
segments += curr_segments
i += 1
# print("FILTER: {} {} : {}".format(i, arr, len(curr_segments)))
return segments
all_points = []
def SLID(img, segments):
global all_points
all_points = []
pregroup, group, hashmap, raw_lines = [[], []], {}, {}, []
dists = {}
def dist(a, b):
h = hash("dist"+str(a)+str(b))
if h not in dists:
dists[h] = np.linalg.norm(arr(a)-arr(b))
return dists[h]
parents = {}
def find(x):
if x not in parents:
parents[x] = x
if parents[x] != x:
parents[x] = find(parents[x])
return parents[x]
def union(a, b):
par_a = find(a)
par_b = find(b)
parents[par_a] = par_b
group[par_b] |= group[par_a]
def height(line, pt):
v = np.cross(arr(line[1])-arr(line[0]), arr(pt)-arr(line[0]))
# Using dist() to speed up distance look-up since the 2-norm
# is used many times
return np.linalg.norm(v)/dist(line[1], line[0])
def are_similar(l1, l2):
'''See Sec.3.2.2 in Czyzewski et al.'''
a = dist(l1[0], l1[1])
b = dist(l2[0], l2[1])
x1 = height(l2, l1[0])
x2 = height(l2, l1[1])
y1 = height(l1, l2[0])
y2 = height(l1, l2[1])
if x1 < 1e-8 and x2 < 1e-8 and y1 < 1e-8 and y2 < 1e-8:
return True
# print("l1: %s, l2: %s" % (str(l1), str(l2)))
# print("x1: %f, x2: %f, y1: %f, y2: %f" % (x1, x2, y1, y2))
gamma = 0.25 * (x1+x2+y1+y2)
# print("gamma:", gamma)
img_width = 500
img_height = 282
p = 0.
A = img_width*img_height
w = np.pi/2 / np.sqrt(np.sqrt(A))
t_delta = p*w
t_delta = 0.0625
# t_delta = 0.05
delta = (a+b) * t_delta
return (a/gamma > delta) and (b/gamma > delta)
def generate_line(a, b, n):
points = []
for i in range(n):
x = a[0] + (b[0] - a[0]) * (i/n)
y = a[1] + (b[1] - a[1]) * (i/n)
points += [[int(x), int(y)]]
return points
def analyze(group):
global all_points
points = []
for idx in group:
points += generate_line(*hashmap[idx], 10)
_, radius = cv2.minEnclosingCircle(arr(points))
w = radius * np.pi / 2
vx, vy, cx, cy = cv2.fitLine(arr(points), cv2.DIST_L2, 0, 0.01, 0.01)
all_points += points
return [[int(cx-vx*w), int(cy-vy*w)], [int(cx+vx*w), int(cy+vy*w)]]
for l in segments:
h = hash(str(l))
# Initialize the line
hashmap[h] = l
group[h] = set([h])
parents[h] = h
wid = l[0][0] - l[1][0]
hei = l[0][1] - l[1][1]
# Divide lines into more horizontal vs more vertical
# to speed up comparison later
if abs(wid) < abs(hei):
pregroup[0].append(l)
else:
pregroup[1].append(l)
for lines in pregroup:
for i in range(len(lines)):
l1 = lines[i]
h1 = hash(str(l1))
# We're looking for the root line of each disjoint set
if parents[h1] != h1:
continue
for j in range(i+1, len(lines)):
l2 = lines[j]
h2 = hash(str(l2))
if parents[h2] != h2:
continue
if are_similar(l1, l2):
# Merge lines into a single disjoint set
union(h1, h2)
for h in group:
if parents[h] != h:
continue
raw_lines += [analyze(group[h])]
return raw_lines
def slid_tendency(raw_lines, s=4):
lines = []
def scale(x, y, s): return int(x * (1+s)/2 + y * (1-s)/2)
for a, b in raw_lines:
a[0] = scale(a[0], b[0], s)
a[1] = scale(a[1], b[1], s)
b[0] = scale(b[0], a[0], s)
b[1] = scale(b[1], a[1], s)
lines += [[a, b]]
return lines
def detect_lines(img):
segments = pSLID(img)
raw_lines = SLID(img, segments)
lines = slid_tendency(raw_lines)
return lines