From 299a5b3202be15d5e719b293054b04b88e22037b Mon Sep 17 00:00:00 2001 From: RemyDegenne Date: Sun, 31 Dec 2023 14:20:30 +0100 Subject: [PATCH] more about Prokhorov's theorem --- blueprint/src/chapter/tight.tex | 17 +++++++++++++++-- 1 file changed, 15 insertions(+), 2 deletions(-) diff --git a/blueprint/src/chapter/tight.tex b/blueprint/src/chapter/tight.tex index ba1b8f9..da02c73 100644 --- a/blueprint/src/chapter/tight.tex +++ b/blueprint/src/chapter/tight.tex @@ -34,15 +34,21 @@ \chapter{Tight families of measures} \end{proof} +\begin{lemma}\label{tight_closure} +\uses{def:tight} +The closure of a tight set of measures is tight. +\end{lemma} + +\begin{proof} +\end{proof} \section{Prokhorov's theorem} \begin{lemma}\label{lem:exists_finite_union_inter_lt} -Let $(U_n)_{n \in \mathbb{N}}$ be measurable sets such that $\bigcap_{n=1}^{+ \infty} U_n = \emptyset$. Let $\mu$ be a measure and let $\varepsilon > 0$. Then there exists a finite set $S \subseteq \mathbb{N}$ such that $\mu(\bigcap_{n \in S} U_n) < \varepsilon$. +Let $(U_n)_{n \in \mathbb{N}}$ be open sets in a complete separable metric space $E$ such that $\bigcup_{n=1}^{+ \infty} U_n = E$. Let $\Gamma$ be a relatively compact set of probability measures on $E$ for the topology of weak convergence of measures. Then for all $\varepsilon > 0$ there exists a finite set $S \subseteq \mathbb{N}$ such that for all $\mu \in \Gamma$, $\mu(\bigcup_{n \in S} U_n) > 1 - \varepsilon$. \end{lemma} \begin{proof} -Rémy: I have a proof of that result in the project formalizing Kolmogorov's extension theorem (joint work with Peter Pfaffelhuber). \end{proof} \begin{lemma}\label{lem:prokhorov_aux1} @@ -52,6 +58,13 @@ \section{Prokhorov's theorem} \begin{proof}\uses{lem:exists_finite_union_inter_lt} \end{proof} +\begin{lemma}\label{ProbabilityMeasure_compact} +If $E$ is a compact metric space, then $\mathcal P(X)$ with the Prokhorov metric is a compact metric space. +\end{lemma} + +\begin{proof} +\end{proof} + \begin{theorem}[Prokhorov's theorem]\label{thm:prokhorov} \uses{def:tight} Let $E$ be a complete separable metric space and let $S \subseteq \mathcal P(E)$. Then the following are equivalent: