-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathlayerVLAD.m
152 lines (113 loc) · 4.63 KB
/
layerVLAD.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
classdef layerVLAD
properties
type= 'custom'
name= 'VLAD'
K
D
vladDim
weights
momentum
learningRate
weightDecay
precious= false
end
methods
function l= layerVLAD(name)
if nargin>0, l.name= name; end
end
function l= constructor(l, weights)
% weights: DxK (assignment clusters), DxK (offset)
assert( length(weights)==2 );
assert( size(weights{1},1) == size(weights{2},1) );
assert( size(weights{1},2) == size(weights{2},2) );
l.D= size(weights{1}, 1);
l.K= size(weights{1}, 2);
l.vladDim= l.D*l.K;
l.weights= { reshape(weights{1}, [1,1,l.D,l.K]), ...
reshape(-weights{2}, [1,1,l.D,l.K]) };
end
function y= forward_(l, x)
batchSize= size(x, 4);
% --- assign
assgn= vl_nnsoftmax( vl_nnconv(x, l.weights{1}, []) );
% --- aggregate
if isa(x, 'gpuArray')
y= zeros([1, l.K, l.D, batchSize], 'single', 'gpuArray');
else
y= zeros([1, l.K, l.D, batchSize], 'single');
end
for iK= 1:l.K
% --- sum over descriptors: assignment_iK * (descs - offset_iK)
y(:,iK,:,:)= ...
sum(sum( ...,
repmat( assgn(:,:,iK,:), [1,1,l.D,1] ) .* ...
vl_nnconv(x, [], l.weights{2}(1,1,:,iK)), ...
1), 2);
% % I expected this to be faster, but it's not:
% y(:,iK,:,:)= ...
% sum(sum( ...,
% bsxfun(@times, ...
% assgn(:,:,iK,:), ...
% vl_nnconv(x, [], l.weights{2}(1,1,:,iK)) ...
% ), 1), 2);
end
% --- normalizations (intra-normalization, L2 normalization)
% performed outside as separate layers
end
function [dzdx, dzdw]= backward_(l, x, dzdy)
batchSize= size(x, 4);
H= size(x, 1);
W= size(x, 2);
% assert(l.D==size(x, 3));
% TODO: stupid to run forward again? remember results?
% --- assign
p= vl_nnconv(x, l.weights{1}, []);
assgn= vl_nnsoftmax(p);
% --- dz/da (soft assignment)
dzda= assgn; % just for the shape/class
for iK= 1:l.K
dzda(:,:,iK,:)= sum( ...
bsxfun(@times, ...
dzdy(:,iK,:,:), ...
vl_nnconv(x, [], l.weights{2}(1,1,:,iK))), ...
3);
end
% --- dz/dp (product of descriptors and clusters)
dzdp= vl_nnsoftmax(p, dzda); clear dzda p;
% --- dz/dw1 (assignment clusters) and dz/dx (via assignment)
[dzdx, dzdw{1}]= vl_nnconv(x, l.weights{1}, [], dzdp); clear dzdp;
% --- dz/dx (via aggregation)
% --- and add to current dz/dx to get the full thing
dzdy= reshape(dzdy, [l.K, l.D, batchSize]);
assgn_= reshape(assgn, [H*W, l.K, batchSize]);
for iB= 1:batchSize
dzdx(:,:,:,iB)= dzdx(:,:,:,iB) + reshape( ...
assgn_(:,:,iB) * dzdy(:,:,iB), ...
[H, W, l.D]);
end
clear assgn_;
% --- dz/dw2 (offset)
dzdw{2}= reshape( sum( ...
dzdy .* ...
repmat( ...
reshape( sum(sum(assgn,1),2), [l.K, 1, batchSize] ), ...
[1, l.D, 1] ), ...
3 )', [1, 1, l.D, l.K] );
end
function objStruct= saveobj(obj)
objStruct= relja_saveobj(obj);
end
end
methods (Static)
function res1= forward(l, res0, res1)
res1.x= l.forward_(res0.x);
end
function res0= backward(l, res0, res1)
[res0.dzdx, res0.dzdw]= l.backward_(res0.x, res1.dzdx);
end
function l= loadobj(objStruct)
l= layerVLAD();
l= relja_loadobj(l, objStruct);
end
end
end