-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeomath.cpp
353 lines (274 loc) · 9.74 KB
/
geomath.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#include <math.h>
#include <float.h>
#include <vector>
#include "geomath.h"
#define sqr(a) ((a)*(a))
//#define atoms ReadMol->atoms
//extern ReadMoleculeBond *ReadMol;
double getBondLen(atom a, atom b) {
double Xa= a.x-b.x;
double Ya= a.y-b.y;
double Za= a.z-b.z;
double q = Xa*Xa+Ya*Ya+Za*Za;
return sqrt(q);
}
double getAngle(atom a, atom c, atom b) {
double
Xa= a.x-c.x,
Ya= a.y-c.y,
Za= a.z-c.z,
Xb= b.x-c.x,
Yb= b.y-c.y,
Zb= b.z-c.z;
double
r = Xa*Xb+Ya*Yb+Za*Zb,
q = Xa*Xa+Ya*Ya+Za*Za,
p = Xb*Xb+Yb*Yb+Zb*Zb;
if (q <=0) {
// printf("Atoms on single line: %d and %d\n",a+1,c+1);
return 0;
} else
if (p <=0) {
// printf("Atoms on single line: %d and %d\n",b+1,c+1);
return 0;
} else
return 180.0/PI*acos(r/(sqrt(p)*sqrt(q)));
}
double getDA(atom i1, atom i2, atom i3, atom i4) { // from CCL
double x1i,x2i,y1i,y2i,z1i,z2i,ux1,uy1,uz1,ux2,uy2,uz2,u1,u2,u,a,dihedr;
x1i=i2.x-i1.x;
y1i=i2.y-i1.y;
z1i=i2.z-i1.z;
x2i=i3.x-i2.x;
y2i=i3.y-i2.y;
z2i=i3.z-i2.z;
ux1=y1i*z2i-z1i*y2i;
uy1=z1i*x2i-x1i*z2i;
uz1=x1i*y2i-y1i*x2i;
x1i=i4.x-i3.x;
y1i=i4.y-i3.y;
z1i=i4.z-i3.z;
ux2=z1i*y2i-y1i*z2i;
uy2=x1i*z2i-z1i*x2i;
uz2=y1i*x2i-x1i*y2i;
u1=ux1*ux1+uy1*uy1+uz1*uz1;
u2=ux2*ux2+uy2*uy2+uz2*uz2;
u=u1*u2;
if (u!=0.0) {
a=(ux1*ux2+uy1*uy2+uz1*uz2)/sqrt(u);
a=max(a,-1.0);
a=min(a,1.0);
dihedr=acos(a);
if (ux1*(uy2*z2i-uz2*y2i)+
uy1*(uz2*x2i-ux2*z2i)+
uz1*(ux2*y2i-uy2*x2i) < 0.0) {dihedr =-dihedr;}
return 180.0/PI*dihedr;
} else {
// printf("Error in dihedral (%d,%d,%d,%d)\n",i1+1,i2+1,i3+1,i4+1);
return 0;
}
}
void rotxyz (int a,int b,int c, double theta, float A[4][4]) {
float ct,st,B[9];
ct = cos(PI*theta/180.0);
st = sin(PI*theta/180.0);
B[0] = A[0][0]*(a+ct*(1-a)) + A[0][1]*( st*c) + A[0][2]*( -st*b);
B[1] = A[0][0]*( -st*c) + A[0][1]*(b+ct*(1-b)) + A[0][2]*( st*a);
B[2] = A[0][0]*( st*b) + A[0][1]*( -st*a) + A[0][2]*(c+ct*(1-c));
B[3] = A[1][0]*(a+ct*(1-a)) + A[1][1]*( st*c) + A[1][2]*( -st*b);
B[4] = A[1][0]*( -st*c) + A[1][1]*(b+ct*(1-b)) + A[1][2]*( st*a);
B[5] = A[1][0]*( st*b) + A[1][1]*( -st*a) + A[1][2]*(c+ct*(1-c));
B[6] = A[2][0]*(a+ct*(1-a)) + A[2][1]*( st*c) + A[2][2]*( -st*b);
B[7] = A[2][0]*( -st*c) + A[2][1]*(b+ct*(1-b)) + A[2][2]*( st*a);
B[8] = A[2][0]*( st*b) + A[2][1]*( -st*a) + A[2][2]*(c+ct*(1-c));
A[0][0] = B[0];
A[0][1] = B[1];
A[0][2] = B[2];
A[1][0] = B[3];
A[1][1] = B[4];
A[1][2] = B[5];
A[2][0] = B[6];
A[2][1] = B[7];
A[2][2] = B[8];
}
void revmat(float A[4][4], float B[4][4]) {
float
det = A[0][0]*A[1][1]*A[2][2]
-A[0][0]*A[1][2]*A[2][1]
-A[1][0]*A[0][1]*A[2][2]
+A[1][0]*A[0][2]*A[2][1]
+A[2][0]*A[0][1]*A[1][2]
-A[2][0]*A[0][2]*A[1][1];
if (det != 0) {
det = -1/det;
B[0][0] = (-A[1][1]*A[2][2]+A[1][2]*A[2][1])*det;
B[0][1] = ( A[0][1]*A[2][2]-A[0][2]*A[2][1])*det;
B[0][2] = (-A[0][1]*A[1][2]+A[0][2]*A[1][1])*det;
B[1][0] = ( A[1][0]*A[2][2]-A[1][2]*A[2][0])*det;
B[1][1] = (-A[0][0]*A[2][2]+A[0][2]*A[2][0])*det;
B[1][2] = ( A[0][0]*A[1][2]-A[0][2]*A[1][0])*det;
B[2][0] = (-A[1][0]*A[2][1]+A[1][1]*A[2][0])*det;
B[2][1] = ( A[0][0]*A[2][1]-A[0][1]*A[2][0])*det;
B[2][2] = (-A[0][0]*A[1][1]+A[0][1]*A[1][0])*det;
} else {
B[0][0] = 1; B[0][1] = 0; B[0][2] = 0;
B[1][0] = 0; B[1][1] = 1; B[1][2] = 0;
B[2][0] = 0; B[2][1] = 0; B[2][2] = 1;
}
}
// internal coordinates to cartesian
int int2car(atom i1, atom i2, atom i3, double R, double W, double T, double *X, double *Y, double *Z) { // from Babel
double cosph,sinph,costh,sinth,coskh,sinkh;
double cosa,sina,cosd,sind;
double xpd,ypd,zpd,xqd,yqd,zqd;
double xa,ya,za;
double rbc,xyb,yza,temp;
double xpa,ypa,zqa;
double xd,yd,zd;
double x[5],y[5],z[5];
x[1]=i1.x; y[1]=i1.y; z[1]=i1.z;
x[2]=i2.x; y[2]=i2.y; z[2]=i2.z;
x[3]=i3.x; y[3]=i3.y; z[3]=i3.z;
double
dist = R,
angle = W * DEG_TO_RAD,
dihed = T * DEG_TO_RAD;
const int i=4, na=3, nb=2, nc=1;
double
xb = x[nb] - x[na],
yb = y[nb] - y[na],
zb = z[nb] - z[na];
rbc = xb*xb + yb*yb + zb*zb;
if ( rbc < 0.0001 ) return 1;
rbc = 1.0/sqrt(rbc);
cosa = cos(angle);
sina = sin(angle);
if( fabs(cosa) >= 0.999999 ) { // Colinear
temp = dist*rbc*cosa;
x[i] = x[na] + temp*xb;
y[i] = y[na] + temp*yb;
z[i] = z[na] + temp*zb;
} else {
xa = x[nc] - x[na];
ya = y[nc] - y[na];
za = z[nc] - z[na];
sind = -sin(dihed);
cosd = cos(dihed);
xd = dist*cosa;
yd = dist*sina*cosd;
zd = dist*sina*sind;
xyb = sqrt(xb*xb + yb*yb);
int flag = 0;
if( xyb < 0.1 ) { // Rotate about y-axis
temp = za; za = -xa; xa = temp;
temp = zb; zb = -xb; xb = temp;
xyb = sqrt(xb*xb + yb*yb);
flag = 1;
}
costh = xb/xyb;
sinth = yb/xyb;
xpa = costh*xa + sinth*ya;
ypa = costh*ya - sinth*xa;
sinph = zb*rbc;
cosph = sqrt(1.0 - sqr(sinph));
zqa = cosph*za - sinph*xpa;
yza = sqrt(ypa*ypa + zqa*zqa);
if( yza > 1.0E-10 ) {
coskh = ypa/yza;
sinkh = zqa/yza;
} else {
coskh = 1.0;
sinkh = 0.0;
}
ypd = coskh*yd - sinkh*zd;
zpd = coskh*zd + sinkh*yd;
xpd = cosph*xd - sinph*zpd;
zqd = cosph*zpd + sinph*xd;
xqd = costh*xpd - sinth*ypd;
yqd = costh*ypd + sinth*xpd;
if( flag ) { // Rotate about y-axis
*X = x[na] - zqd;
*Y = y[na] + yqd;
*Z = z[na] + xqd;
} else {
*X = x[na] + xqd;
*Y = y[na] + yqd;
*Z = z[na] + zqd;
}
}
return 0;
}
// Translate the molecule relative to the screen
void shiftxyz(atomvector atoms, double sx, double sy, double sz, float roma[4][4], float romb[4][4]) {
revmat(roma,romb); // calculate A^(-1), where A - rotation matrix
double
tx = romb[0][0]*sx + romb[1][0]*sy + romb[2][0]*sz,
ty = romb[0][1]*sx + romb[1][1]*sy + romb[2][1]*sz,
tz = romb[0][2]*sx + romb[1][2]*sy + romb[2][2]*sz;
for ( int i=0; i<atoms.size(); i++) {
atoms[i].x += tx;
atoms[i].y += ty;
atoms[i].z += tz;
}
}
void cpymat(float A[4][4], float B[4][4]) {
for ( int i=0; i<3; i++) {
for ( int j=0; j<3; j++) {
B[i][j] = A[i][j];
}
}
}
// rotate the vector
void rotvec(float V[3], float A[4][4]) {
double sx = V[0], sy = V[1], sz = V[2];
V[0] = A[0][0]*sx + A[1][0]*sy + A[2][0]*sz,
V[1] = A[0][1]*sx + A[1][1]*sy + A[2][1]*sz,
V[2] = A[0][2]*sx + A[1][2]*sy + A[2][2]*sz;
}
// rotate the whole system
void rotall(atomvector atoms, float A[4][4]) {
for ( int i=0; i<atoms.size(); i++) {
double sx = atoms[i].x, sy = atoms[i].y, sz = atoms[i].z;
atoms[i].x = A[0][0]*sx + A[1][0]*sy + A[2][0]*sz,
atoms[i].y = A[0][1]*sx + A[1][1]*sy + A[2][1]*sz,
atoms[i].z = A[0][2]*sx + A[1][2]*sy + A[2][2]*sz;
}
}
// distance between point (x3,y3,z3) and line (x1,y1,z1)-(x2,y2,z2)
double LinePointDistance(double x1, double y1, double z1,
double x2, double y2, double z2,
double x3, double y3, double z3 ) {
double x4 = (-2*x3*x2*x1+x2*x2*x3+x1*x1*x3-y1*x1*y2-z1*x1*z2+y2*y2*x1-
y1*x2*y3-y2*y1*x2+y2*y3*x2-z1*x2*z3+z2*z3*x2-z2*z1*x2-z3*z2*x1+
x1*z3*z1-x1*y3*y2+x1*y3*y1+z1*z1*x2+z2*z2*x1+y1*y1*x2)/
(y1*y1+z2*z2+z1*z1-2*x2*x1-2*y2*y1-2*z2*z1+y2*y2+x2*x2+x1*x1);
double y4 = (-x4 * y2 + x4 * y1 + x1 * y2 - y1 * x2) / (-x2 + x1);
double z4 = (-x4 * z2 + x4 * z1 + x1 * z2 - z1 * x2) / (-x2 + x1);
double r2=sqr(x4-x3)+sqr(y4-y3)+sqr(z4-z3);
return sqrt(r2);
}
// distance between point (x3,y3,z3) and line segment (x1,y1,z1)-(x2,y2,z2)
double SegmentPointDistance(double x1, double y1, double z1,
double x2, double y2, double z2,
double x3, double y3, double z3 ) {
double x4 = (-2*x3*x2*x1+x2*x2*x3+x1*x1*x3-y1*x1*y2-z1*x1*z2+y2*y2*x1-
y1*x2*y3-y2*y1*x2+y2*y3*x2-z1*x2*z3+z2*z3*x2-z2*z1*x2-z3*z2*x1+
x1*z3*z1-x1*y3*y2+x1*y3*y1+z1*z1*x2+z2*z2*x1+y1*y1*x2)/
(y1*y1+z2*z2+z1*z1-2*x2*x1-2*y2*y1-2*z2*z1+y2*y2+x2*x2+x1*x1);
double y4 = (-x4 * y2 + x4 * y1 + x1 * y2 - y1 * x2) / (-x2 + x1);
double z4 = (-x4 * z2 + x4 * z1 + x1 * z2 - z1 * x2) / (-x2 + x1); // x4,y4,z4 - point on the line (x1,y1,z1)-(x2,y2,z2)
// intersection with perpendicular line from (x3,y3,z3)
double r1 = sqrt(sqr(x4-x1)+sqr(y4-y1)+sqr(z4-z1)); // point to segment begin distance
double r2 = sqrt(sqr(x4-x2)+sqr(y4-y2)+sqr(z4-z2)); // point to segment end distance
double r3 = sqrt(sqr(x2-x1)+sqr(y2-y1)+sqr(z2-z1)); // segment length
double rr; // distance from point to segment
if ((r1+r2-r3)<0.00001) { // point is inside the segment
rr = sqrt(sqr(x4-x3)+sqr(y4-y3)+sqr(z4-z3)); // calculate distance to line
} else
if (r1<r2) { // point closer to begin of segment
rr = sqrt(sqr(x3-x1)+sqr(y3-y1)+sqr(z3-z1)); // distance to begin
} else { // point closer to end of segment
rr = sqrt(sqr(x3-x2)+sqr(y3-y2)+sqr(z3-z2)); // distance to end
}
return rr;
}