-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
Copy pathtest_keyedvectors.py
501 lines (413 loc) · 22 KB
/
test_keyedvectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Author: Jayant Jain <[email protected]>
# Copyright (C) 2017 Radim Rehurek <[email protected]>
# Licensed under the GNU LGPL v2.1 - https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
"""
Automated tests for checking the poincare module from the models package.
"""
import functools
import logging
import unittest
import numpy as np
from gensim.models.keyedvectors import KeyedVectors, REAL, pseudorandom_weak_vector
from gensim.test.utils import datapath
import gensim.models.keyedvectors
logger = logging.getLogger(__name__)
class TestKeyedVectors(unittest.TestCase):
def setUp(self):
self.vectors = KeyedVectors.load_word2vec_format(datapath('euclidean_vectors.bin'), binary=True)
self.model_path = datapath("w2v_keyedvectors_load_test.modeldata")
self.vocab_path = datapath("w2v_keyedvectors_load_test.vocab")
def test_most_similar(self):
"""Test most_similar returns expected results."""
expected = [
'conflict',
'administration',
'terrorism',
'call',
'israel'
]
predicted = [result[0] for result in self.vectors.most_similar('war', topn=5)]
self.assertEqual(expected, predicted)
def test_most_similar_vector(self):
"""Can we pass vectors to most_similar directly?"""
positive = self.vectors.vectors[0:5]
most_similar = self.vectors.most_similar(positive=positive)
assert most_similar is not None
def test_most_similar_parameter_types(self):
"""Are the positive/negative parameter types are getting interpreted correctly?"""
partial = functools.partial(self.vectors.most_similar, topn=5)
position = partial('war', 'peace')
position_list = partial(['war'], ['peace'])
keyword = partial(positive='war', negative='peace')
keyword_list = partial(positive=['war'], negative=['peace'])
#
# The above calls should all yield identical results.
#
assert position == position_list
assert position == keyword
assert position == keyword_list
def test_most_similar_cosmul_parameter_types(self):
"""Are the positive/negative parameter types are getting interpreted correctly?"""
partial = functools.partial(self.vectors.most_similar_cosmul, topn=5)
position = partial('war', 'peace')
position_list = partial(['war'], ['peace'])
keyword = partial(positive='war', negative='peace')
keyword_list = partial(positive=['war'], negative=['peace'])
#
# The above calls should all yield identical results.
#
assert position == position_list
assert position == keyword
assert position == keyword_list
def test_vectors_for_all_list(self):
"""Test vectors_for_all returns expected results with a list of keys."""
words = [
'conflict',
'administration',
'terrorism',
'an out-of-vocabulary word',
'another out-of-vocabulary word',
]
vectors_for_all = self.vectors.vectors_for_all(words)
expected = 3
predicted = len(vectors_for_all)
assert expected == predicted
expected = self.vectors['conflict']
predicted = vectors_for_all['conflict']
assert np.allclose(expected, predicted)
def test_vectors_for_all_with_copy_vecattrs(self):
"""Test vectors_for_all returns can copy vector attributes."""
words = ['conflict']
vectors_for_all = self.vectors.vectors_for_all(words, copy_vecattrs=True)
expected = self.vectors.get_vecattr('conflict', 'count')
predicted = vectors_for_all.get_vecattr('conflict', 'count')
assert expected == predicted
def test_vectors_for_all_without_copy_vecattrs(self):
"""Test vectors_for_all returns can copy vector attributes."""
words = ['conflict']
vectors_for_all = self.vectors.vectors_for_all(words, copy_vecattrs=False)
not_expected = self.vectors.get_vecattr('conflict', 'count')
predicted = vectors_for_all.get_vecattr('conflict', 'count')
assert not_expected != predicted
def test_most_similar_topn(self):
"""Test most_similar returns correct results when `topn` is specified."""
self.assertEqual(len(self.vectors.most_similar('war', topn=5)), 5)
self.assertEqual(len(self.vectors.most_similar('war', topn=10)), 10)
predicted = self.vectors.most_similar('war', topn=None)
self.assertEqual(len(predicted), len(self.vectors))
predicted = self.vectors.most_similar('war', topn=0)
self.assertEqual(len(predicted), 0)
predicted = self.vectors.most_similar('war', topn=np.uint8(0))
self.assertEqual(len(predicted), 0)
def test_relative_cosine_similarity(self):
"""Test relative_cosine_similarity returns expected results with an input of a word pair and topn"""
wordnet_syn = [
'good', 'goodness', 'commodity', 'trade_good', 'full', 'estimable', 'honorable',
'respectable', 'beneficial', 'just', 'upright', 'adept', 'expert', 'practiced', 'proficient',
'skillful', 'skilful', 'dear', 'near', 'dependable', 'safe', 'secure', 'right', 'ripe', 'well',
'effective', 'in_effect', 'in_force', 'serious', 'sound', 'salutary', 'honest', 'undecomposed',
'unspoiled', 'unspoilt', 'thoroughly', 'soundly',
] # synonyms for "good" as per wordnet
cos_sim = [self.vectors.similarity("good", syn) for syn in wordnet_syn if syn in self.vectors]
cos_sim = sorted(cos_sim, reverse=True) # cosine_similarity of "good" with wordnet_syn in decreasing order
# computing relative_cosine_similarity of two similar words
rcs_wordnet = self.vectors.similarity("good", "nice") / sum(cos_sim[i] for i in range(10))
rcs = self.vectors.relative_cosine_similarity("good", "nice", 10)
self.assertTrue(rcs_wordnet >= rcs)
self.assertTrue(np.allclose(rcs_wordnet, rcs, 0, 0.125))
# computing relative_cosine_similarity for two non-similar words
rcs = self.vectors.relative_cosine_similarity("good", "worst", 10)
self.assertTrue(rcs < 0.10)
def test_most_similar_raises_keyerror(self):
"""Test most_similar raises KeyError when input is out of vocab."""
with self.assertRaises(KeyError):
self.vectors.most_similar('not_in_vocab')
def test_most_similar_restrict_vocab(self):
"""Test most_similar returns handles restrict_vocab correctly."""
expected = set(self.vectors.index_to_key[:5])
predicted = set(result[0] for result in self.vectors.most_similar('war', topn=5, restrict_vocab=5))
self.assertEqual(expected, predicted)
def test_most_similar_with_vector_input(self):
"""Test most_similar returns expected results with an input vector instead of an input word."""
expected = [
'war',
'conflict',
'administration',
'terrorism',
'call',
]
input_vector = self.vectors['war']
predicted = [result[0] for result in self.vectors.most_similar([input_vector], topn=5)]
self.assertEqual(expected, predicted)
def test_most_similar_to_given(self):
"""Test most_similar_to_given returns correct results."""
predicted = self.vectors.most_similar_to_given('war', ['terrorism', 'call', 'waging'])
self.assertEqual(predicted, 'terrorism')
def test_similar_by_word(self):
"""Test similar_by_word returns expected results."""
expected = [
'conflict',
'administration',
'terrorism',
'call',
'israel',
]
predicted = [result[0] for result in self.vectors.similar_by_word('war', topn=5)]
self.assertEqual(expected, predicted)
def test_similar_by_vector(self):
"""Test similar_by_word returns expected results."""
expected = [
'war',
'conflict',
'administration',
'terrorism',
'call',
]
input_vector = self.vectors['war']
predicted = [result[0] for result in self.vectors.similar_by_vector(input_vector, topn=5)]
self.assertEqual(expected, predicted)
def test_distance(self):
"""Test that distance returns expected values."""
self.assertTrue(np.allclose(self.vectors.distance('war', 'conflict'), 0.06694602))
self.assertEqual(self.vectors.distance('war', 'war'), 0)
def test_similarity(self):
"""Test similarity returns expected value for two words, and for identical words."""
self.assertTrue(np.allclose(self.vectors.similarity('war', 'war'), 1))
self.assertTrue(np.allclose(self.vectors.similarity('war', 'conflict'), 0.93305397))
def test_closer_than(self):
"""Test words_closer_than returns expected value for distinct and identical nodes."""
self.assertEqual(self.vectors.closer_than('war', 'war'), [])
expected = set(['conflict', 'administration'])
self.assertEqual(set(self.vectors.closer_than('war', 'terrorism')), expected)
def test_rank(self):
"""Test rank returns expected value for distinct and identical nodes."""
self.assertEqual(self.vectors.rank('war', 'war'), 1)
self.assertEqual(self.vectors.rank('war', 'terrorism'), 3)
def test_add_single(self):
"""Test that adding entity in a manual way works correctly."""
entities = [f'___some_entity{i}_not_present_in_keyed_vectors___' for i in range(5)]
vectors = [np.random.randn(self.vectors.vector_size) for _ in range(5)]
# Test `add` on already filled kv.
for ent, vector in zip(entities, vectors):
self.vectors.add_vectors(ent, vector)
for ent, vector in zip(entities, vectors):
self.assertTrue(np.allclose(self.vectors[ent], vector))
# Test `add` on empty kv.
kv = KeyedVectors(self.vectors.vector_size)
for ent, vector in zip(entities, vectors):
kv.add_vectors(ent, vector)
for ent, vector in zip(entities, vectors):
self.assertTrue(np.allclose(kv[ent], vector))
def test_add_multiple(self):
"""Test that adding a bulk of entities in a manual way works correctly."""
entities = ['___some_entity{}_not_present_in_keyed_vectors___'.format(i) for i in range(5)]
vectors = [np.random.randn(self.vectors.vector_size) for _ in range(5)]
# Test `add` on already filled kv.
vocab_size = len(self.vectors)
self.vectors.add_vectors(entities, vectors, replace=False)
self.assertEqual(vocab_size + len(entities), len(self.vectors))
for ent, vector in zip(entities, vectors):
self.assertTrue(np.allclose(self.vectors[ent], vector))
# Test `add` on empty kv.
kv = KeyedVectors(self.vectors.vector_size)
kv[entities] = vectors
self.assertEqual(len(kv), len(entities))
for ent, vector in zip(entities, vectors):
self.assertTrue(np.allclose(kv[ent], vector))
def test_add_type(self):
kv = KeyedVectors(2)
assert kv.vectors.dtype == REAL
words, vectors = ["a"], np.array([1., 1.], dtype=np.float64).reshape(1, -1)
kv.add_vectors(words, vectors)
assert kv.vectors.dtype == REAL
def test_set_item(self):
"""Test that __setitem__ works correctly."""
vocab_size = len(self.vectors)
# Add new entity.
entity = '___some_new_entity___'
vector = np.random.randn(self.vectors.vector_size)
self.vectors[entity] = vector
self.assertEqual(len(self.vectors), vocab_size + 1)
self.assertTrue(np.allclose(self.vectors[entity], vector))
# Replace vector for entity in vocab.
vocab_size = len(self.vectors)
vector = np.random.randn(self.vectors.vector_size)
self.vectors['war'] = vector
self.assertEqual(len(self.vectors), vocab_size)
self.assertTrue(np.allclose(self.vectors['war'], vector))
# __setitem__ on several entities.
vocab_size = len(self.vectors)
entities = ['war', '___some_new_entity1___', '___some_new_entity2___', 'terrorism', 'conflict']
vectors = [np.random.randn(self.vectors.vector_size) for _ in range(len(entities))]
self.vectors[entities] = vectors
self.assertEqual(len(self.vectors), vocab_size + 2)
for ent, vector in zip(entities, vectors):
self.assertTrue(np.allclose(self.vectors[ent], vector))
def test_load_model_and_vocab_file_strict(self):
"""Test loading model and voacab files which have decoding errors: strict mode"""
with self.assertRaises(UnicodeDecodeError):
gensim.models.KeyedVectors.load_word2vec_format(
self.model_path, fvocab=self.vocab_path, binary=False, unicode_errors="strict")
def test_load_model_and_vocab_file_replace(self):
"""Test loading model and voacab files which have decoding errors: replace mode"""
model = gensim.models.KeyedVectors.load_word2vec_format(
self.model_path, fvocab=self.vocab_path, binary=False, unicode_errors="replace")
self.assertEqual(model.get_vecattr(u'ありがとう�', 'count'), 123)
self.assertEqual(model.get_vecattr(u'どういたしまして�', 'count'), 789)
self.assertEqual(model.key_to_index[u'ありがとう�'], 0)
self.assertEqual(model.key_to_index[u'どういたしまして�'], 1)
self.assertTrue(np.array_equal(
model.get_vector(u'ありがとう�'), np.array([.6, .6, .6], dtype=np.float32)))
self.assertTrue(np.array_equal(
model.get_vector(u'どういたしまして�'), np.array([.1, .2, .3], dtype=np.float32)))
def test_load_model_and_vocab_file_ignore(self):
"""Test loading model and voacab files which have decoding errors: ignore mode"""
model = gensim.models.KeyedVectors.load_word2vec_format(
self.model_path, fvocab=self.vocab_path, binary=False, unicode_errors="ignore")
self.assertEqual(model.get_vecattr(u'ありがとう', 'count'), 123)
self.assertEqual(model.get_vecattr(u'どういたしまして', 'count'), 789)
self.assertEqual(model.key_to_index[u'ありがとう'], 0)
self.assertEqual(model.key_to_index[u'どういたしまして'], 1)
self.assertTrue(np.array_equal(
model.get_vector(u'ありがとう'), np.array([.6, .6, .6], dtype=np.float32)))
self.assertTrue(np.array_equal(
model.get_vector(u'どういたしまして'), np.array([.1, .2, .3], dtype=np.float32)))
def test_save_reload(self):
randkv = KeyedVectors(vector_size=100)
count = 20
keys = [str(i) for i in range(count)]
weights = [pseudorandom_weak_vector(randkv.vector_size) for _ in range(count)]
randkv.add_vectors(keys, weights)
tmpfiletxt = gensim.test.utils.get_tmpfile("tmp_kv.txt")
randkv.save_word2vec_format(tmpfiletxt, binary=False)
reloadtxtkv = KeyedVectors.load_word2vec_format(tmpfiletxt, binary=False)
self.assertEqual(randkv.index_to_key, reloadtxtkv.index_to_key)
self.assertTrue((randkv.vectors == reloadtxtkv.vectors).all())
tmpfilebin = gensim.test.utils.get_tmpfile("tmp_kv.bin")
randkv.save_word2vec_format(tmpfilebin, binary=True)
reloadbinkv = KeyedVectors.load_word2vec_format(tmpfilebin, binary=True)
self.assertEqual(randkv.index_to_key, reloadbinkv.index_to_key)
self.assertTrue((randkv.vectors == reloadbinkv.vectors).all())
def test_no_header(self):
randkv = KeyedVectors(vector_size=100)
count = 20
keys = [str(i) for i in range(count)]
weights = [pseudorandom_weak_vector(randkv.vector_size) for _ in range(count)]
randkv.add_vectors(keys, weights)
tmpfiletxt = gensim.test.utils.get_tmpfile("tmp_kv.txt")
randkv.save_word2vec_format(tmpfiletxt, binary=False, write_header=False)
reloadtxtkv = KeyedVectors.load_word2vec_format(tmpfiletxt, binary=False, no_header=True)
self.assertEqual(randkv.index_to_key, reloadtxtkv.index_to_key)
self.assertTrue((randkv.vectors == reloadtxtkv.vectors).all())
def test_get_mean_vector(self):
"""Test get_mean_vector returns expected results."""
keys = [
'conflict',
'administration',
'terrorism',
'call',
'an out-of-vocabulary word',
]
weights = [1, 2, 3, 1, 2]
expected_result_1 = np.array([
0.02000151, -0.12685453, 0.09196121, 0.25514853, 0.25740655,
-0.11134843, -0.0502661, -0.19278568, -0.83346179, -0.12068878,
], dtype=np.float32)
expected_result_2 = np.array([
-0.0145228, -0.11530358, 0.1169825, 0.22537769, 0.29353586,
-0.10458107, -0.05272481, -0.17547795, -0.84245106, -0.10356515,
], dtype=np.float32)
expected_result_3 = np.array([
0.01343237, -0.47651053, 0.45645328, 0.98304356, 1.1840123,
-0.51647933, -0.25308795, -0.77931081, -3.55954733, -0.55429711,
], dtype=np.float32)
self.assertTrue(np.allclose(self.vectors.get_mean_vector(keys), expected_result_1))
self.assertTrue(np.allclose(self.vectors.get_mean_vector(keys, weights), expected_result_2))
self.assertTrue(np.allclose(
self.vectors.get_mean_vector(keys, pre_normalize=False), expected_result_3)
)
class Gensim320Test(unittest.TestCase):
def test(self):
path = datapath('old_keyedvectors_320.dat')
vectors = gensim.models.keyedvectors.KeyedVectors.load(path)
self.assertTrue(vectors.get_vector('computer') is not None)
def save_dict_to_word2vec_formated_file(fname, word2vec_dict):
with gensim.utils.open(fname, "wb") as f:
num_words = len(word2vec_dict)
vector_length = len(list(word2vec_dict.values())[0])
header = "%d %d\n" % (num_words, vector_length)
f.write(header.encode(encoding="ascii"))
for word, vector in word2vec_dict.items():
f.write(word.encode())
f.write(' '.encode())
f.write(np.array(vector).astype(np.float32).tobytes())
class LoadWord2VecFormatTest(unittest.TestCase):
def assert_dict_equal_to_model(self, d, m):
self.assertEqual(len(d), len(m))
for word in d.keys():
self.assertSequenceEqual(list(d[word]), list(m[word]))
def verify_load2vec_binary_result(self, w2v_dict, binary_chunk_size, limit):
tmpfile = gensim.test.utils.get_tmpfile("tmp_w2v")
save_dict_to_word2vec_formated_file(tmpfile, w2v_dict)
w2v_model = \
gensim.models.keyedvectors._load_word2vec_format(
cls=gensim.models.KeyedVectors,
fname=tmpfile,
binary=True,
limit=limit,
binary_chunk_size=binary_chunk_size)
if limit is None:
limit = len(w2v_dict)
w2v_keys_postprocessed = list(w2v_dict.keys())[:limit]
w2v_dict_postprocessed = {k.lstrip(): w2v_dict[k] for k in w2v_keys_postprocessed}
self.assert_dict_equal_to_model(w2v_dict_postprocessed, w2v_model)
def test_load_word2vec_format_basic(self):
w2v_dict = {"abc": [1, 2, 3],
"cde": [4, 5, 6],
"def": [7, 8, 9]}
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=5, limit=None)
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=16, limit=None)
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=1024, limit=None)
w2v_dict = {"abc": [1, 2, 3],
"cdefg": [4, 5, 6],
"d": [7, 8, 9]}
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=5, limit=None)
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=16, limit=None)
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=1024, limit=None)
def test_load_word2vec_format_limit(self):
w2v_dict = {"abc": [1, 2, 3],
"cde": [4, 5, 6],
"def": [7, 8, 9]}
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=5, limit=1)
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=16, limit=1)
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=1024, limit=1)
w2v_dict = {"abc": [1, 2, 3],
"cde": [4, 5, 6],
"def": [7, 8, 9]}
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=5, limit=2)
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=16, limit=2)
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=1024, limit=2)
w2v_dict = {"abc": [1, 2, 3],
"cdefg": [4, 5, 6],
"d": [7, 8, 9]}
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=5, limit=1)
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=16, limit=1)
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=1024, limit=1)
w2v_dict = {"abc": [1, 2, 3],
"cdefg": [4, 5, 6],
"d": [7, 8, 9]}
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=5, limit=2)
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=16, limit=2)
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=1024, limit=2)
def test_load_word2vec_format_space_stripping(self):
w2v_dict = {"\nabc": [1, 2, 3],
"cdefdg": [4, 5, 6],
"\n\ndef": [7, 8, 9]}
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=5, limit=None)
self.verify_load2vec_binary_result(w2v_dict, binary_chunk_size=5, limit=1)
if __name__ == '__main__':
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG)
unittest.main()