-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
49 lines (43 loc) · 1.61 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import argparse
import model
import torch
import pdb
import functions
import matplotlib.pyplot as plt
import math
from time import *
import pylab as pl
import os
import skimage.io
import numpy
import scipy.io as sio
from time import *
from thop import profile
def main():
parser=argparse.ArgumentParser()
parser.add_argument('--test_ms', help='test lrms image name', required=True)
parser.add_argument('--test_pan', help='test hrpan image name', required=True)
parser.add_argument('--not_cuda', action='store_true', help='disables cuda', default=0)
parser.add_argument('--device',default=torch.device('cuda:1'))
parser.add_argument('--channels', default=4)
opt=parser.parse_args()
start_time=time()
ms_data = skimage.io.imread('%s' % (opt.test_ms))
ms_data=functions.test_matRead(ms_data,opt)
pan_data = skimage.io.imread('%s' % (opt.test_pan))
pan_data = pan_data[ :, :, None]
pan_data=functions.test_matRead(pan_data,opt)
net = model.Generator(opt).to(opt.device)
input1=(torch.randn(1,opt.channels,64,64)).to(opt.device).type(torch.cuda.FloatTensor)
input2 = (torch.randn(1, 1, 256, 256)).to(opt.device).type(torch.cuda.FloatTensor)
flops,params=profile(net,(input1,input2))
print('flops:',flops,'params:',params)
start_time=time()
net.load_state_dict(torch.load('Output/G_epoch_{}.pth'), strict=False)
in_s = net(ms_data, pan_data)
skimage.io.imsave('result/01.tif', functions.convert_image_np((in_s.detach())).astype(numpy.uint16))
# end_time = time()
end_time=time()
print(end_time-start_time)
if __name__ == '__main__':
main()