-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMPU9250.ino
489 lines (411 loc) · 20.9 KB
/
MPU9250.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
// TODO: use threading in Unity (done)
#include "MPU9250.h"
#define QuaternionOutput false
#define RawOutput false
#define AccOutput false
#define GyroOutput false
#define MagOutput false
#define YawPitchRollOutput true
#define CalibrateMag true
//#define DEG_TO_RAD 0.01745329252f // (PI/180.0) i don't actually need this line
int myLed = 13;
MPU9250 myIMU;
// quaternionFilters -----------------------------------------------------------------------------------------------------------
// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
float GyroMeasError = PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s)
//float GyroMeasDrift = PI * (0.0f/ 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
// There is a tradeoff in the beta parameter between accuracy and response speed.
// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion.
// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car!
// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec
// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense;
// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy.
// In any case, this is the free parameter in the Madgwick filtering and fusion scheme.
float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
//float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
#define Ki 0.0f
float deltat = 0.0f; // integration interval for both filter schemes
int i=0;
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
// ---------------------------------------------------------------------------------------------------------------------------
void setup ()
{
// Start i2c and serial(baud rate)
Wire.begin();
Serial.begin(38400);
pinMode(myLed, OUTPUT);
digitalWrite(myLed, HIGH);
// Wait for an MPU9250 to be connected
Serial.println("Waiting for MPU9250...");
while(myIMU.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250) != 0x71){ yield(); }
// Read the WHO_AM_I register, this is a good test of communication
byte c = myIMU.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);
Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX);
Serial.print(" I should be "); Serial.println(0x71, HEX);
// Initialize the MPU9250
InitializeMPU9250();
}
void InitializeMPU9250 ()
{
Serial.println("MPU9250 is online...");
// Start by performing self test and reporting values
myIMU.MPU9250SelfTest(myIMU.SelfTest);
Serial.print("x-axis self test: acceleration trim within : ");
Serial.print(myIMU.SelfTest[0],1); Serial.println("% of factory value");
Serial.print("y-axis self test: acceleration trim within : ");
Serial.print(myIMU.SelfTest[1],1); Serial.println("% of factory value");
Serial.print("z-axis self test: acceleration trim within : ");
Serial.print(myIMU.SelfTest[2],1); Serial.println("% of factory value");
Serial.print("x-axis self test: gyration trim within : ");
Serial.print(myIMU.SelfTest[3],1); Serial.println("% of factory value");
Serial.print("y-axis self test: gyration trim within : ");
Serial.print(myIMU.SelfTest[4],1); Serial.println("% of factory value");
Serial.print("z-axis self test: gyration trim within : ");
Serial.print(myIMU.SelfTest[5],1); Serial.println("% of factory value");
// Calibrate gyro and accelerometers, load biases in bias registers
myIMU.calibrateMPU9250(myIMU.gyroBias, myIMU.accelBias);
Serial.println("GYRO BIAS");
Serial.println(myIMU.gyroBias[0]);
Serial.println(myIMU.gyroBias[1]);
Serial.println(myIMU.gyroBias[2]);
// Initialize device for active mode read of acclerometer, gyroscope, and temperature
myIMU.initMPU9250();
Serial.println("MPU9250 initialized for active data mode....");
// Read the WHO_AM_I register of the magnetometer, this is a good test of communication
byte d = myIMU.readByte(AK8963_ADDRESS, WHO_AM_I_AK8963);
Serial.print("AK8963 ");
Serial.print("I AM ");
Serial.print(d, HEX);
Serial.print(" I should be ");
Serial.println(0x48, HEX);
// Get magnetometer calibration from AK8963 ROM
myIMU.initAK8963(myIMU.factoryMagCalibration);
// Initialize device for active mode read of magnetometer
Serial.println("AK8963 initialized for active data mode....");
// Get sensor resolutions, only need to do this once
myIMU.getAres();
myIMU.getGres();
myIMU.getMres();
if(CalibrateMag)
{
// The next call delays for 4 seconds, and then records about 15 seconds of
// data to calculate bias and scale.
myIMU.magCalMPU9250(myIMU.magBias, myIMU.magScale);
Serial.println("AK8963 mag biases (mG)");
Serial.println(myIMU.magBias[0]);
Serial.println(myIMU.magBias[1]);
Serial.println(myIMU.magBias[2]);
Serial.println("AK8963 mag scale (mG)");
Serial.println(myIMU.magScale[0]);
Serial.println(myIMU.magScale[1]);
Serial.println(myIMU.magScale[2]);
delay(100); // Add delay to see results before serial spew of data
}
}
void loop ()
{
// Must be called before updating quaternions!
myIMU.updateTime();
//Serial.println("update");
//y,z,x x,-z,y this one seems to be good, 5° drift from still orientation
MadgwickQuaternionUpdate(myIMU.ay, myIMU.az, myIMU.ax, myIMU.gy*PI/180.0f, myIMU.gz*PI/180.0f, myIMU.gx*PI/180.0f, myIMU.mx, -myIMU.mz, myIMU.my);
//MadgwickQuaternionUpdate(-myIMU.ax, myIMU.ay, myIMU.az, myIMU.gx*PI/180.0f, -myIMU.gy*PI/180.0f, -myIMU.gz*PI/180.0f, myIMU.my, -myIMU.mx, myIMU.mz); // good
//MadgwickQuaternionUpdate(-ax, ay, az, gxPI/180.0f, -gyPI/180.0f, -gz*PI/180.0f, my, -mx, mz);
//MadgwickQuaternionUpdate(myIMU.ax, myIMU.ay, -myIMU.az, myIMU.gx*PI/180.0f, myIMU.gy*PI/180.0f, -myIMU.gz*PI/180.0f, myIMU.my, myIMU.mx, myIMU.mz);
//And according to it, I pass the paremeters as (ax, ay, -az, gx, gy, -gz, my, mx, mz) if I take ax/gx/my as north.
//ax, ay, -az, gx, gy, -gz, my, mx, mz
//Looks right, you should be able to get ~5 degree heading accuracy if your MCU can do the fusion fast enough.
//MadgwickQuaternionUpdate(myIMU.ax, -myIMU.ay, -myIMU.az, myIMU.gx*PI/180.0f, -myIMU.gy*PI/180.0f, -myIMU.gz*PI/180.0f, myIMU.my, -myIMU.mx, myIMU.mz);
//MadgwickQuaternionUpdate(-myIMU.ay, -myIMU.ax, myIMU.az, myIMU.gy*PI/180.0f, myIMU.gx*PI/180.0f, -myIMU.gz*PI/180.0f, myIMU.mx, myIMU.my, myIMU.mz); // current
//-Ay, -Ax, Az, Gy, Gx, -Gz, Mx, My, and Mz
//https://github.com/kriswiner/MPU-9250/issues/26 can delete these, from this site << its just another order that works (mag seems to be noisy, maybe because i didn't calibrate before testing this one)
//MadgwickQuaternionUpdate(myIMU.ax, myIMU.ay, myIMU.az, myIMU.gx*PI/180.0f, myIMU.gy*PI/180.0f, myIMU.gz*PI/180.0f, myIMU.my, myIMU.mx, -myIMU.mz);
//MadgwickQuaternionUpdate(ax, ay, az, gx * PI / 180.0f, gy * PI / 180.0f, gz * PI / 180.0f, my, mx, -mz);**
// Serial print and/or display at 0.5 s rate independent of data rates
myIMU.delt_t = millis() - myIMU.count;
if (myIMU.delt_t > 30)
{
// If intPin goes high, all data registers have new data
// On interrupt, check if data ready interrupt
if (myIMU.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01)
{
myIMU.readAccelData(myIMU.accelCount); // Read the x/y/z adc values
// Now we'll calculate the accleration value into actual g's
// This depends on scale being set
myIMU.ax = (float)myIMU.accelCount[0] * myIMU.aRes; // - myIMU.accelBias[0];
myIMU.ay = (float)myIMU.accelCount[1] * myIMU.aRes; // - myIMU.accelBias[1];
myIMU.az = (float)myIMU.accelCount[2] * myIMU.aRes; // - myIMU.accelBias[2];
myIMU.readGyroData(myIMU.gyroCount); // Read the x/y/z adc values
// Calculate the gyro value into actual degrees per second
// This depends on scale being set
myIMU.gx = (float)myIMU.gyroCount[0] * myIMU.gRes;
myIMU.gy = (float)myIMU.gyroCount[1] * myIMU.gRes;
myIMU.gz = (float)myIMU.gyroCount[2] * myIMU.gRes;
myIMU.readMagData(myIMU.magCount); // Read the x/y/z adc values
// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
// Get actual magnetometer value, this depends on scale being set
myIMU.mx = (float)myIMU.magCount[0] * myIMU.mRes * myIMU.factoryMagCalibration[0] - myIMU.magBias[0];
myIMU.my = (float)myIMU.magCount[1] * myIMU.mRes * myIMU.factoryMagCalibration[1] - myIMU.magBias[1];
myIMU.mz = (float)myIMU.magCount[2] * myIMU.mRes * myIMU.factoryMagCalibration[2] - myIMU.magBias[2];
//Serial.println("read");
}
if(QuaternionOutput)
{
// Print Quaternion value
Serial.print(q[0], 5);
Serial.print(",");
Serial.print(q[1], 5);
Serial.print(",");
Serial.print(q[2], 5);
Serial.print(",");
Serial.println(q[3], 5);
}
if(AccOutput)
{
// Print acceleration values in g
Serial.print(myIMU.ax, 5);
Serial.print(",");
Serial.print(myIMU.ay, 5);
Serial.print(",");
Serial.println(myIMU.az, 5);
}
if(GyroOutput)
{
// Print gyro values in dps
Serial.print(myIMU.gx, 5);
Serial.print(",");
Serial.print(myIMU.gy, 5);
Serial.print(",");
Serial.println(myIMU.gz, 5);
}
if(MagOutput)
{
// Print mag values in ga
Serial.print(myIMU.mx, 5);
Serial.print(",");
Serial.print(myIMU.my, 5);
Serial.print(",");
Serial.println(myIMU.mz, 5);
}
if(YawPitchRollOutput)
{
float yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
float pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
float roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
pitch *= 180.0f / PI;
yaw *= 180.0f / PI;
yaw -= 15.0; // Declination at Hobart, Tasmania is about 15 degrees in March 2017
roll *= 180.0f / PI;
//i++;
//if(i>100)
Serial.print(yaw, 2);
Serial.print(", ");
Serial.print(pitch, 2);
Serial.print(", ");
Serial.println(roll, 2);
}
if(RawOutput)
{
// Print acceleration values in g
Serial.print(myIMU.ax, 5);
Serial.print(",");
Serial.print(myIMU.ay, 5);
Serial.print(",");
Serial.print(myIMU.az, 5);
Serial.print(",");
// Print gyro values in dps
Serial.print(myIMU.gx, 5);
Serial.print(",");
Serial.print(myIMU.gy, 5);
Serial.print(",");
Serial.print(myIMU.gz, 5);
Serial.print(",");
// Print mag values in ga
Serial.print(myIMU.mx, 5);
Serial.print(",");
Serial.print(myIMU.my, 5);
Serial.print(",");
Serial.println(myIMU.mz, 5);
}
myIMU.count = millis();
myIMU.sumCount = 0;
myIMU.sum = 0;
}
}
// quaternionFilters -----------------------------------------------------------------------------------------------------------
// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
{
float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
float norm;
float hx, hy, _2bx, _2bz;
float s1, s2, s3, s4;
float qDot1, qDot2, qDot3, qDot4;
// Auxiliary variables to avoid repeated arithmetic
float _2q1mx;
float _2q1my;
float _2q1mz;
float _2q2mx;
float _4bx;
float _4bz;
float _2q1 = 2.0f * q1;
float _2q2 = 2.0f * q2;
float _2q3 = 2.0f * q3;
float _2q4 = 2.0f * q4;
float _2q1q3 = 2.0f * q1 * q3;
float _2q3q4 = 2.0f * q3 * q4;
float q1q1 = q1 * q1;
float q1q2 = q1 * q2;
float q1q3 = q1 * q3;
float q1q4 = q1 * q4;
float q2q2 = q2 * q2;
float q2q3 = q2 * q3;
float q2q4 = q2 * q4;
float q3q3 = q3 * q3;
float q3q4 = q3 * q4;
float q4q4 = q4 * q4;
// Normalise accelerometer measurement
norm = sqrtf(ax * ax + ay * ay + az * az);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f/norm;
ax *= norm;
ay *= norm;
az *= norm;
// Normalise magnetometer measurement
norm = sqrtf(mx * mx + my * my + mz * mz);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f/norm;
mx *= norm;
my *= norm;
mz *= norm;
// Reference direction of Earth's magnetic field
_2q1mx = 2.0f * q1 * mx;
_2q1my = 2.0f * q1 * my;
_2q1mz = 2.0f * q1 * mz;
_2q2mx = 2.0f * q2 * mx;
hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
_2bx = sqrtf(hx * hx + hy * hy);
_2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
_4bx = 2.0f * _2bx;
_4bz = 2.0f * _2bz;
// Gradient decent algorithm corrective step
s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
norm = sqrtf(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
norm = 1.0f/norm;
s1 *= norm;
s2 *= norm;
s3 *= norm;
s4 *= norm;
// Compute rate of change of quaternion
qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
// Integrate to yield quaternion
q1 += qDot1 * myIMU.deltat;
q2 += qDot2 * myIMU.deltat;
q3 += qDot3 * myIMU.deltat;
q4 += qDot4 * myIMU.deltat;
norm = sqrtf(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
norm = 1.0f/norm;
q[0] = q1 * norm;
q[1] = q2 * norm;
q[2] = q3 * norm;
q[3] = q4 * norm;
}
// Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
// measured ones.
void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
{
float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
float norm;
float hx, hy, bx, bz;
float vx, vy, vz, wx, wy, wz;
float ex, ey, ez;
float pa, pb, pc;
// Auxiliary variables to avoid repeated arithmetic
float q1q1 = q1 * q1;
float q1q2 = q1 * q2;
float q1q3 = q1 * q3;
float q1q4 = q1 * q4;
float q2q2 = q2 * q2;
float q2q3 = q2 * q3;
float q2q4 = q2 * q4;
float q3q3 = q3 * q3;
float q3q4 = q3 * q4;
float q4q4 = q4 * q4;
// Normalise accelerometer measurement
norm = sqrtf(ax * ax + ay * ay + az * az);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f / norm; // use reciprocal for division
ax *= norm;
ay *= norm;
az *= norm;
// Normalise magnetometer measurement
norm = sqrtf(mx * mx + my * my + mz * mz);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f / norm; // use reciprocal for division
mx *= norm;
my *= norm;
mz *= norm;
// Reference direction of Earth's magnetic field
hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
bx = sqrtf((hx * hx) + (hy * hy));
bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
// Estimated direction of gravity and magnetic field
vx = 2.0f * (q2q4 - q1q3);
vy = 2.0f * (q1q2 + q3q4);
vz = q1q1 - q2q2 - q3q3 + q4q4;
wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
// Error is cross product between estimated direction and measured direction of gravity
ex = (ay * vz - az * vy) + (my * wz - mz * wy);
ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
if (Ki > 0.0f)
{
eInt[0] += ex; // accumulate integral error
eInt[1] += ey;
eInt[2] += ez;
}
else
{
eInt[0] = 0.0f; // prevent integral wind up
eInt[1] = 0.0f;
eInt[2] = 0.0f;
}
// Apply feedback terms
gx = gx + Kp * ex + Ki * eInt[0];
gy = gy + Kp * ey + Ki * eInt[1];
gz = gz + Kp * ez + Ki * eInt[2];
// Integrate rate of change of quaternion
pa = q2;
pb = q3;
pc = q4;
q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
// Normalise quaternion
norm = sqrtf(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
norm = 1.0f / norm;
q[0] = q1 * norm;
q[1] = q2 * norm;
q[2] = q3 * norm;
q[3] = q4 * norm;
}