-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLabeledPKI.fst
310 lines (283 loc) · 14 KB
/
LabeledPKI.fst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/// LabeledPKI (implementation)
/// ============================
module LabeledPKI
module A = LabeledCryptoAPI
module R = LabeledRuntimeAPI
let serialize_session_st st : bytes =
match st with
|SigningKey t secret_key -> concat ((string_to_bytes "SigningKey")) (concat ((string_to_bytes t)) (secret_key))
|VerificationKey t p public_key -> concat ((string_to_bytes "VerificationKey")) (concat ((string_to_bytes t)) (concat ((string_to_bytes p)) public_key))
|DHPrivateKey t secret_key -> concat ((string_to_bytes "DHPrivateKey")) (concat ((string_to_bytes t)) secret_key)
|DHPublicKey t p public_key -> concat ((string_to_bytes "DHPublicKey")) (concat ((string_to_bytes t)) (concat ((string_to_bytes p)) public_key))
|OneTimeDHPrivKey t secret_key -> concat ((string_to_bytes "OneTimeDHPrivKey")) (concat ((string_to_bytes t)) secret_key)
|OneTimeDHPubKey t p public_key -> concat ((string_to_bytes "OneTimeDHPubKey")) (concat ((string_to_bytes t)) (concat ((string_to_bytes p)) public_key))
|DeletedOneTimeKey t -> concat ((string_to_bytes "DeletedOneTimeKey")) ((string_to_bytes t))
|DecryptionKey t secret_key -> concat ((string_to_bytes "DecryptionKey")) (concat ((string_to_bytes t)) secret_key)
|EncryptionKey t p public_key -> concat ((string_to_bytes "EncryptionKey")) (concat ((string_to_bytes t)) (concat ((string_to_bytes p)) public_key))
|APP s -> concat ((string_to_bytes "APP")) s
let parse_session_st (serialized_session:bytes) : result session_st =
let? r = split serialized_session in
let (tn,o) = r in
match? bytes_to_string tn with
| "APP" -> Success (APP o)
| "SigningKey" -> (
let? (tb,sk) = split o in
let? t = bytes_to_string tb in
Success (SigningKey t sk))
| "VerificationKey" -> (
let? (tb,ppk) = split o in
let? t = bytes_to_string tb in
let? (pb,pk) = split ppk in
let? p = bytes_to_string pb in
Success (VerificationKey t p pk))
| "DHPrivateKey" -> (
let? (tb,sk) = split o in
let? t = bytes_to_string tb in
Success (DHPrivateKey t sk))
| "DHPublicKey" -> (
let? (tb,ppk) = split o in
let? t = bytes_to_string tb in
let? (pb,pk) = split ppk in
let? p = bytes_to_string pb in
Success (DHPublicKey t p pk))
| "OneTimeDHPrivKey" -> (
let? (tb,sk) = split o in
let? t = bytes_to_string tb in
Success (OneTimeDHPrivKey t sk))
| "OneTimeDHPubKey" -> (
let? (tb,ppk) = split o in
let? t = bytes_to_string tb in
let? (pb,pk) = split ppk in
let? p = bytes_to_string pb in
Success (OneTimeDHPubKey t p pk))
| "DeletedOneTimeKey" -> (
let? t = bytes_to_string o in
Success (DeletedOneTimeKey t))
| "DecryptionKey" -> (
let? (tb,sk) = split o in
let? t = bytes_to_string tb in
Success (DecryptionKey t sk))
| "EncryptionKey" -> (
let? (tb,ppk) = split o in
let? t = bytes_to_string tb in
let? (pb,pk) = split ppk in
let? p = bytes_to_string pb in
Success (EncryptionKey t p pk))
| _ -> Error "unknown key name"
val parse_serialize_session_st_lemma : ss:session_st ->
Lemma (Success ss == parse_session_st (serialize_session_st ss))
[SMTPat (parse_session_st (serialize_session_st ss))]
let parse_serialize_session_st_lemma ss =
assert_norm(Success ss == parse_session_st (serialize_session_st ss))
let valid_session (pr:R.preds) (i:timestamp) (p:principal) (si:nat) (vi:nat) (st:session_st) : Type0 =
match st with
| SigningKey t secret_key ->
A.is_signing_key pr.R.global_usage i secret_key (readers [P p]) t
| VerificationKey t p public_key ->
A.is_verification_key pr.R.global_usage i public_key (readers [P p]) t
| DHPrivateKey t secret_key ->
A.is_dh_private_key pr.R.global_usage i secret_key (readers [P p]) t
| DHPublicKey t p public_key ->
A.is_dh_public_key pr.R.global_usage i public_key (readers [P p]) t
| OneTimeDHPrivKey t secret_key ->
vi = 0 /\ A.is_dh_private_key pr.R.global_usage i secret_key (readers [V p si 0]) t
| OneTimeDHPubKey t p public_key ->
(exists si. A.is_dh_public_key pr.R.global_usage i public_key (readers [V p si 0]) t)
| DeletedOneTimeKey t ->
vi = 1
| DecryptionKey t secret_key ->
A.is_private_dec_key pr.R.global_usage i secret_key (readers [P p]) t
| EncryptionKey t p public_key ->
A.is_public_enc_key pr.R.global_usage i public_key (readers [P p]) t
| APP s -> R.(pr.trace_preds.session_st_inv i p si vi s)
val valid_session_later: pr:R.preds -> i:timestamp -> j:timestamp -> p: principal -> si:nat -> vi:nat -> st:session_st -> Lemma
((valid_session pr i p si vi st /\ later_than j i) ==> valid_session pr j p si vi st)
[SMTPat (valid_session pr i p si vi st); SMTPat (valid_session pr j p si vi st)]
let valid_session_later pr i j p si vi st = ()
let includes_lemma (p:principal) (s:nat) (v:nat) : Lemma (includes_ids [P p] [V p s v]) [SMTPat (includes_ids [P p] [V p s v])] = ()
val valid_session_lemma: pr:R.preds -> i:timestamp -> p: principal -> si:nat -> vi:nat -> st:session_st ->
Lemma (requires (valid_session pr i p si vi st))
(ensures (A.is_msg pr.R.global_usage i (serialize_session_st st) (readers [V p si vi])))
[SMTPatOr
[
[SMTPat (valid_session pr i p si vi st)];
[SMTPat (A.is_msg pr.R.global_usage i (serialize_session_st st) (readers [V p si vi]))]
]
]
let valid_session_lemma pr i p si vi st =
let l = readers [V p si vi] in
let tg : A.msg pr.R.global_usage i public =
match st with
| SigningKey _ _ -> A.string_to_bytes #pr.R.global_usage #i ("SigningKey")
| VerificationKey _ _ _ -> A.string_to_bytes #pr.R.global_usage #i ("VerificationKey")
| DHPrivateKey _ _ -> A.string_to_bytes #pr.R.global_usage #i ("DHPrivateKey")
| DHPublicKey _ _ _ -> A.string_to_bytes #pr.R.global_usage #i ("DHPublicKey")
| OneTimeDHPrivKey _ _ -> A.string_to_bytes #pr.R.global_usage #i ("OneTimeDHPrivKey")
| OneTimeDHPubKey _ _ _ -> A.string_to_bytes #pr.R.global_usage #i ("OneTimeDHPubKey")
| DeletedOneTimeKey _ -> A.string_to_bytes #pr.R.global_usage #i ("DeletedOneTimeKey")
| DecryptionKey _ _ -> A.string_to_bytes #pr.R.global_usage #i ("DecryptionKey")
| EncryptionKey _ _ _ -> A.string_to_bytes #pr.R.global_usage #i ("EncryptionKey")
| APP _ -> A.string_to_bytes #pr.R.global_usage #i ("APP") in
match st with
| SigningKey t secret_key
| DHPrivateKey t secret_key
| DecryptionKey t secret_key ->
assert (A.can_flow i public l);
A.includes_can_flow_lemma i [P p] [V p si vi];
let ct = A.concat #pr.R.global_usage #i #(readers [P p]) tg (A.concat #pr.R.global_usage #i #(readers [P p]) (A.string_to_bytes #pr.R.global_usage #i t) secret_key) in
()
| OneTimeDHPrivKey t secret_key ->
let ct = A.concat #pr.R.global_usage #i #(readers [V p si vi]) tg (A.concat #pr.R.global_usage #i #(readers [V p si vi]) (A.string_to_bytes #pr.R.global_usage #i t) secret_key) in
()
| OneTimeDHPubKey t p' public_key ->
let pb = A.string_to_bytes #pr.R.global_usage #i (p') in
let ct = A.concat #pr.R.global_usage #i #l tg (A.concat #pr.R.global_usage #i #l (A.string_to_bytes #pr.R.global_usage #i t) (A.concat #pr.R.global_usage #i #l pb public_key)) in
()
| DeletedOneTimeKey t ->
let ct = A.concat #pr.R.global_usage #i #(readers [V p si vi]) tg (A.string_to_bytes #pr.R.global_usage #i t) in
()
| VerificationKey t p' public_key
| DHPublicKey t p' public_key
| EncryptionKey t p' public_key ->
let pb = A.string_to_bytes #pr.R.global_usage #i (p') in
assert (A.can_flow i public (readers [P p]));
A.includes_can_flow_lemma i [P p] [V p si vi];
let ct = A.concat #pr.R.global_usage #i #l tg (A.concat #pr.R.global_usage #i #l (A.string_to_bytes #pr.R.global_usage #i t) (A.concat #pr.R.global_usage #i #l pb public_key)) in
()
| APP s ->
R.(pr.trace_preds.session_st_inv_lemma i p si vi s);
assert (A.is_msg pr.R.global_usage i s l);
let ct = A.concat #pr.R.global_usage #i #l tg s in
()
let session_st_inv pr i p si vi st: prop =
A.is_msg pr.R.global_usage i st (readers [V p si vi]) /\
(match parse_session_st st with
| Success s -> valid_session pr i p si vi s
| _ -> False)
val session_st_inv_later: pr:R.preds -> i:timestamp -> j:timestamp -> p: principal -> si:nat -> vi:nat -> st:bytes -> Lemma
((session_st_inv pr i p si vi st /\ later_than j i) ==> session_st_inv pr j p si vi st)
[SMTPat (session_st_inv pr i p si vi st); SMTPat (session_st_inv pr j p si vi st)]
let session_st_inv_later pr i j p si vi st = ()
let pki (pr:R.preds) : R.preds = {
R.global_usage = pr.R.global_usage;
R.trace_preds = {
R.can_trigger_event = pr.R.trace_preds.R.can_trigger_event;
R.session_st_inv = session_st_inv pr;
R.session_st_inv_later = session_st_inv_later pr;
R.session_st_inv_lemma = (fun i p si vi st -> ())
}
}
open LabeledCryptoAPI
open LabeledRuntimeAPI
let new_session #pr #i p si vi ss =
let sst = serialize_session_st (APP ss) in
assert (session_st_inv pr i p si vi sst);
assert ((pki pr).trace_preds.session_st_inv i p si vi sst);
new_session #(pki pr) #i p si vi sst
let update_session #pr #i p si vi ss =
let sst = serialize_session_st (APP ss) in
update_session #(pki pr) #i p si vi sst
let get_session #pr #i p si =
let (|vi,s|) = get_session #(pki pr) #i p si in
match parse_session_st s with
| Success (APP s') ->
assert (valid_session pr i p si vi (APP s'));
pr.trace_preds.session_st_inv_lemma i p si vi s';
(|vi,s'|)
| _ -> error "get_session: not an application state"
let find_session #pr #i p f =
let f' si vi st =
match parse_session_st st with
| Success (APP s) -> f si vi s
| _ -> false in
match find_session #(pki pr) #i p f' with
| None -> None
| Some (|si,vi,st|) -> (
(match parse_session_st st with
| Success (APP s') ->
assert (valid_session pr i p si vi (APP s'));
pr.trace_preds.session_st_inv_lemma i p si vi s';
Some (|si,vi,s'|)
| _ -> error "find_session: not an application state")
)
let keygen pr p si kt ts :
LCrypto (t:timestamp & private_key pr t si p kt ts) (pki pr)
(requires (fun _ -> True))
(ensures (fun t0 (|t,sk|) t1 -> t == trace_len t0 /\ trace_len t1 == t + 1)) =
match kt with
| SIG -> let (|t,sk|) = R.rand_gen #(pki pr) (readers [P p]) (sig_usage ts) in (|t,sk|)
| DH -> let (|t,sk|) = R.rand_gen #(pki pr) (readers [P p]) (dh_usage ts) in (|t,sk|)
| PKE -> let (|t,sk|) = R.rand_gen #(pki pr) (readers [P p]) (pke_usage ts) in (|t,sk|)
| OneTimeDH -> let (|t,sk|) = R.rand_gen #(pki pr) (readers [V p si 0]) (dh_usage ts) in (|t,sk|)
let private_key_st pr i p si vi (kt:key_type{kt <> OneTimeDH}) ts (sk:private_key pr i si p kt ts) : s:session_st {valid_session pr i p si vi s} =
match kt with
| SIG -> SigningKey ts sk
| DH -> DHPrivateKey ts sk
| PKE -> DecryptionKey ts sk
let public_key_st pr i p peer si vi (kt:key_type{kt <> OneTimeDH}) ts (sk:private_key pr i si p kt ts) : s:session_st {valid_session pr i peer si vi s} =
match kt with
| SIG -> VerificationKey ts p (A.vk #pr.global_usage #i #(readers [P p]) sk)
| DH -> DHPublicKey ts p (A.dh_pk #pr.global_usage #i #(readers [P p]) sk)
| PKE -> EncryptionKey ts p (A.pk #pr.global_usage #i #(readers [P p]) sk)
let kt2string (kt:key_type) =
match kt with
| SIG -> "SIG"
| DH -> "DH"
| PKE -> "PKE"
| OneTimeDH -> "OneTimeDH"
let gen_private_key #pr #t0 p kt ts =
print_string ("generating private key '"^ts^"' of type "^(kt2string kt)^" for '"^p^"'\n");
let si = new_session_number #(pki pr) p in
let (|t1,sk|) = keygen pr p si kt ts in
assert (later_than t1 t0);
let st = (match kt with | OneTimeDH -> OneTimeDHPrivKey ts sk | _ -> private_key_st pr t1 p si 0 kt ts sk) in
let new_ss_st = serialize_session_st st in
let t2 = global_timestamp () in
assert (session_st_inv pr t2 p si 0 new_ss_st);
assert ((pki pr).trace_preds.session_st_inv t2 p si 0 new_ss_st);
LabeledRuntimeAPI.new_session #(pki pr) #t2 p si 0 new_ss_st;
si
let get_private_key #pr #i p kt ts =
let filter si vi b = match kt, parse_session_st b with
| SIG, Success (SigningKey ts' sk)
| DH, Success (DHPrivateKey ts' sk)
| PKE, Success (DecryptionKey ts' sk)
| OneTimeDH, Success (OneTimeDHPrivKey ts' sk) -> ts = ts'
| _ -> false in
match R.find_session #(pki pr) #i p filter with
| Some (|si,vi,st|) ->
(match kt, parse_session_st st with
| SIG, Success (SigningKey ts' sk) -> (|si, sk|)
| DH, Success (DHPrivateKey ts' sk) -> (|si, sk|)
| PKE, Success (DecryptionKey ts' sk) -> (|si, sk|)
| OneTimeDH, Success (OneTimeDHPrivKey ts' sk) -> (|si, sk|)
|_ -> error "not the right kind of key")
| None -> error ("private key named '" ^ ts ^ "' not found in " ^ p ^ "'s state")
let install_public_key #pr #i p peer kt ts =
print_string ("installing public key for "^p^" at "^peer^"\n");
let (|osi, sk|) = get_private_key #pr #i p kt ts in
let si = new_session_number #(pki pr) peer in
let st = (match kt with | OneTimeDH -> OneTimeDHPubKey ts p (A.dh_pk #pr.global_usage #i #(readers [V p osi 0]) sk) | _ -> public_key_st pr i p peer si 0 kt ts sk) in
let new_st = serialize_session_st st in
R.new_session #(pki pr) #i peer si 0 new_st;
si
let get_public_key #pr #i p peer kt ts =
let filter si vi b = match kt, parse_session_st b with
| SIG, Success (VerificationKey ts' pr _)
| DH, Success (DHPublicKey ts' pr _)
| PKE, Success (EncryptionKey ts' pr _)
| OneTimeDH, Success (OneTimeDHPubKey ts' pr _) -> pr = peer && ts = ts'
| _ -> false in
match R.find_session #(pki pr) #i p filter with
| Some (|si,vi,st|) ->
(match kt, parse_session_st st with
| SIG, Success (VerificationKey ts' _ sk) -> sk
| DH, Success (DHPublicKey ts' _ sk) -> sk
| PKE, Success (EncryptionKey ts' _ sk) -> sk
| OneTimeDH, Success (OneTimeDHPubKey ts' peer sk) -> sk
|_ -> error "not the right kind of key")
| None -> error ("Could not find " ^ peer ^ "'s public key (with name " ^ ts ^ ") in " ^ p ^ "'s state")
let delete_one_time_key #pr #i p ts =
let (|si, sk|) = get_private_key #pr #i p OneTimeDH ts in
let st = serialize_session_st (DeletedOneTimeKey ts) in
R.update_session #(pki pr) #i p si 1 st