-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMobileNetV1.cpp
194 lines (160 loc) · 6.76 KB
/
MobileNetV1.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#include <stdio.h>
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <opencv2/highgui.hpp>
#include <fstream>
#include <iostream>
#include <opencv2/core/ocl.hpp>
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/register.h"
#include "tensorflow/lite/string_util.h"
#include "tensorflow/lite/model.h"
#include <cmath>
/// Besides your regular TensorFlow Lite and flatbuffers library,
/// you must also compiled TensorFlow Lite from scratch by bazel
/// with the option GPU delegate set, before you can use the GPU delegates
/// see https://qengineering.eu/install-tensorflow-2-lite-on-jetson-nano.html
/// note also, it will not bring any speed improvement.
//#define GPU_DELEGATE //remove comment to deploy GPU delegates
#ifdef GPU_DELEGATE
#include "tensorflow/lite/delegates/gpu/delegate.h"
#endif // GPU_DELEGATE
using namespace cv;
using namespace std;
int model_width;
int model_height;
int model_channels;
std::vector<std::string> Labels;
std::unique_ptr<tflite::Interpreter> interpreter;
//-----------------------------------------------------------------------------------------------------------------------
static bool getFileContent(std::string fileName)
{
// Open the File
std::ifstream in(fileName.c_str());
// Check if object is valid
if(!in.is_open()) return false;
std::string str;
// Read the next line from File untill it reaches the end.
while (std::getline(in, str))
{
// Line contains string of length > 0 then save it in vector
if(str.size()>0) Labels.push_back(str);
}
// Close The File
in.close();
return true;
}
//-----------------------------------------------------------------------------------------------------------------------
void detect_from_video(Mat &src)
{
Mat image;
int cam_width =src.cols;
int cam_height=src.rows;
// copy image to input as input tensor
cv::resize(src, image, Size(model_width,model_height),INTER_NEAREST);
memcpy(interpreter->typed_input_tensor<uchar>(0), image.data, image.total() * image.elemSize());
interpreter->Invoke(); // run your model
const float* detection_locations = interpreter->tensor(interpreter->outputs()[0])->data.f;
const float* detection_classes=interpreter->tensor(interpreter->outputs()[1])->data.f;
const float* detection_scores = interpreter->tensor(interpreter->outputs()[2])->data.f;
const int num_detections = *interpreter->tensor(interpreter->outputs()[3])->data.f;
//there are ALWAYS 10 detections no matter how many objects are detectable
// cout << "number of detections: " << num_detections << "\n";
const float confidence_threshold = 0.5;
for(int i = 0; i < num_detections; i++){
if(detection_scores[i] > confidence_threshold){
int det_index = (int)detection_classes[i]+1;
float y1=detection_locations[4*i ]*cam_height;
float x1=detection_locations[4*i+1]*cam_width;
float y2=detection_locations[4*i+2]*cam_height;
float x2=detection_locations[4*i+3]*cam_width;
Rect rec((int)x1, (int)y1, (int)(x2 - x1), (int)(y2 - y1));
rectangle(src,rec, Scalar(0, 0, 255), 1, 8, 0);
putText(src, format("%s", Labels[det_index].c_str()), Point(x1, y1-5) ,FONT_HERSHEY_SIMPLEX,0.5, Scalar(0, 0, 255), 1, 8, 0);
}
}
}
//-----------------------------------------------------------------------------------------------------------------------
int main(int argc,char ** argv)
{
float f;
float FPS[16];
int i, Fcnt=0;
Mat frame;
chrono::steady_clock::time_point Tbegin, Tend;
for(i=0;i<16;i++) FPS[i]=0.0;
// Load model
std::unique_ptr<tflite::FlatBufferModel> model = tflite::FlatBufferModel::BuildFromFile("detect.tflite");
// Build the interpreter
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*model.get(), resolver)(&interpreter);
#ifdef GPU_DELEGATE
TfLiteDelegate *MyDelegate = NULL;
const TfLiteGpuDelegateOptionsV2 options = {
.is_precision_loss_allowed = 1, //FP16,
.inference_preference = TFLITE_GPU_INFERENCE_PREFERENCE_FAST_SINGLE_ANSWER,
.inference_priority1 = TFLITE_GPU_INFERENCE_PRIORITY_MIN_LATENCY,
.inference_priority2 = TFLITE_GPU_INFERENCE_PRIORITY_AUTO,
.inference_priority3 = TFLITE_GPU_INFERENCE_PRIORITY_AUTO,
};
MyDelegate = TfLiteGpuDelegateV2Create(&options);
if(interpreter->ModifyGraphWithDelegate(MyDelegate) != kTfLiteOk) {
cerr << "ERROR: Unable to use delegate" << endl;
return 0;
}
#endif // GPU_DELEGATE
interpreter->AllocateTensors();
interpreter->SetAllowFp16PrecisionForFp32(true);
interpreter->SetNumThreads(4); //quad core
// Get input dimension from the input tensor metadata
// Assuming one input only
int In = interpreter->inputs()[0];
model_height = interpreter->tensor(In)->dims->data[1];
model_width = interpreter->tensor(In)->dims->data[2];
model_channels = interpreter->tensor(In)->dims->data[3];
cout << "height : "<< model_height << endl;
cout << "width : "<< model_width << endl;
cout << "channels : "<< model_channels << endl;
// Get the names
bool result = getFileContent("COCO_labels.txt");
if(!result)
{
cout << "loading labels failed";
exit(-1);
}
VideoCapture cap("James.mp4");
if (!cap.isOpened()) {
cerr << "ERROR: Unable to open the camera" << endl;
return 0;
}
cout << "Start grabbing, press ESC on Live window to terminate" << endl;
while(1){
// frame=imread("Traffic.jpg"); //need to refresh frame before dnn class detection
cap >> frame;
if (frame.empty()) {
cerr << "ERROR: Unable to grab from the camera" << endl;
break;
}
Tbegin = chrono::steady_clock::now();
detect_from_video(frame);
Tend = chrono::steady_clock::now();
//calculate frame rate
f = chrono::duration_cast <chrono::milliseconds> (Tend - Tbegin).count();
if(f>0.0) FPS[((Fcnt++)&0x0F)]=1000.0/f;
for(f=0.0, i=0;i<16;i++){ f+=FPS[i]; }
putText(frame, format("FPS %0.2f", f/16),Point(10,20),FONT_HERSHEY_SIMPLEX,0.6, Scalar(0, 0, 255));
//show output
imshow("Jetson Nano", frame);
char esc = waitKey(5);
if(esc == 27) break;
}
cout << "Closing the camera" << endl;
destroyAllWindows();
#ifdef GPU_DELEGATE
interpreter.reset();
TfLiteGpuDelegateV2Delete(MyDelegate);
#endif // GPU_DELEGATE
cout << "Bye!" << endl;
return 0;
}
//-----------------------------------------------------------------------------------------------------------------------