-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
Copy pathprediction_epoch_loop.py
167 lines (133 loc) · 6.64 KB
/
prediction_epoch_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from collections import OrderedDict
from typing import Any, Dict, Iterator, List, Optional, Tuple
import torch
from deprecate import void
from pytorch_lightning.loops.base import Loop
from pytorch_lightning.overrides.distributed import IndexBatchSamplerWrapper
from pytorch_lightning.trainer.progress import Progress
from pytorch_lightning.utilities.apply_func import move_data_to_device
from pytorch_lightning.utilities.warnings import WarningCache
class PredictionEpochLoop(Loop):
"""Loop performing prediction on arbitrary sequentially used dataloaders."""
def __init__(self) -> None:
super().__init__()
self.return_predictions: bool = False
self.predictions: List[Any] = []
self.current_batch_indices: List[int] = []
self.batch_progress = Progress()
self._dl_max_batches: Optional[int] = None
self._num_dataloaders: Optional[int] = None
self._warning_cache = WarningCache()
self._all_batch_indices: List[int] = []
@property
def done(self) -> bool:
"""Ends prediction when the iteration count exceeds the total number of available batches."""
return self.batch_progress.current.completed >= self._dl_max_batches
@property
def should_store_predictions(self) -> bool:
"""Whether the predictions should be stored for later usage (e.g. aggregation or returning)"""
any_pred = any(cb.interval.on_epoch for cb in self.trainer.prediction_writer_callbacks)
return self.return_predictions or any_pred
def connect(self, **kwargs: "Loop") -> None:
raise NotImplementedError(f"{self.__class__.__name__} does not connect any child loops.")
def reset(self) -> None:
"""Resets the loops internal state."""
self._all_batch_indices: List[int] = []
self.predictions: List[Any] = []
self.batch_progress.current.reset()
def on_run_start(
self,
dataloader_iter: Iterator,
dataloader_idx: int,
dl_max_batches: int,
num_dataloaders: int,
return_predictions: bool = False,
) -> None:
"""Prepares the loops internal state.
Args:
dataloader_iter: the iterator over the current dataloader
dataloader_idx: the index of the current dataloader
dl_max_batches: the maximum number of batches the current loader can produce
num_dataloaders: the total number of dataloaders
return_predictions: whether to return the obtained predictions
"""
void(dataloader_iter, dataloader_idx)
self._dl_max_batches = dl_max_batches
self._num_dataloaders = num_dataloaders
self.return_predictions = return_predictions
def advance(
self,
dataloader_iter: Iterator,
dataloader_idx: int,
dl_max_batches: int,
num_dataloaders: int,
return_predictions: bool = False,
) -> None:
"""Runs one prediction step.
Args:
dataloader_iter: the iterator over the current dataloader
dataloader_idx: the index of the current dataloader
dl_max_batches: the maximum number of batches the current loader can produce
num_dataloaders: the total number of dataloaders
return_predictions: whether to return the obtained predictions
"""
batch_idx, batch = next(dataloader_iter)
if batch is None:
raise StopIteration
with self.trainer.profiler.profile("predict_batch_to_device"):
batch = self.trainer.accelerator.batch_to_device(batch, dataloader_idx=dataloader_idx)
self.batch_progress.increment_ready()
with self.trainer.profiler.profile("predict_step"):
self._predict_step(batch, batch_idx, dataloader_idx)
def on_run_end(self) -> Tuple[Any, Any]:
"""Returns the predictions and the corresponding batch indices."""
predictions = self.predictions
all_batch_indices = self._all_batch_indices
# free memory
self.predictions = []
self._all_batch_indices = []
return predictions, all_batch_indices
def _predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None:
"""Runs the actual predict step together with all the necessary bookkeeping and the hooks tied to the
predict step.
Args:
batch: the current batch to run the prediction on
batch_idx: the index of the current batch
dataloader_idx: the index of the dataloader producing the current batch
"""
# configure step_kwargs
step_kwargs = self._build_kwargs(batch, batch_idx, dataloader_idx)
# extract batch_indices and store them
self._store_batch_indices(dataloader_idx)
model_ref = self.trainer.lightning_module
self.trainer.call_hook("on_predict_batch_start", batch, batch_idx, dataloader_idx)
self.batch_progress.increment_started()
model_ref._current_fx_name = "predict_step"
predictions = self.trainer.accelerator.predict_step(step_kwargs)
self.batch_progress.increment_processed()
if predictions is None:
self._warning_cache.warn("predict returned None if it was on purpose, ignore this warning...")
self.trainer.call_hook("on_predict_batch_end", predictions, batch, batch_idx, dataloader_idx)
self.batch_progress.increment_completed()
if self.should_store_predictions:
self.predictions.append(move_data_to_device(predictions, torch.device("cpu")))
def _build_kwargs(self, batch: Any, batch_idx: int, dataloader_idx: int) -> Dict[str, Any]:
"""Assembles the keyword arguments for the ``predict_step``
Args:
batch: the current batch to run the prediction on
batch_idx: the index of the current batch
dataloader_idx: the index of the dataloader producing the current batch
Returns:
the dictionary containing all the keyboard arguments for the predict step
"""
step_kwargs = OrderedDict([("batch", batch), ("batch_idx", batch_idx)])
if self._num_dataloaders > 1:
step_kwargs["dataloader_idx"] = dataloader_idx
return step_kwargs
def _store_batch_indices(self, dataloader_idx: int) -> None:
"""Stores the batch indices if the predictions should be stored."""
batch_sampler = self.trainer.predict_dataloaders[dataloader_idx].batch_sampler
if isinstance(batch_sampler, IndexBatchSamplerWrapper):
self.current_batch_indices = batch_sampler.batch_indices
if self.should_store_predictions:
self._all_batch_indices.append(batch_sampler.batch_indices)