-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathELEGANT.py
479 lines (395 loc) · 21.5 KB
/
ELEGANT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# -*- coding:utf-8 -*-
# Created Time: 2018/03/12 10:48:38
# Author: Taihong Xiao <[email protected]>
from dataset import config, MultiCelebADataset
from nets import Encoder, Decoder, Discriminator
import os
import argparse
import torch
from torchvision import transforms
from PIL import Image
import numpy as np
from tensorboardX import SummaryWriter
from itertools import chain
class ELEGANT(object):
def __init__(self, args,
config=config, dataset=MultiCelebADataset, \
encoder=Encoder, decoder=Decoder, discriminator=Discriminator):
self.args = args
self.attributes = args.attributes
self.n_attributes = len(self.attributes)
self.gpu = args.gpu
self.mode = args.mode
self.restore = args.restore
# init dataset and networks
self.config = config
self.dataset = dataset(self.attributes)
self.Enc = encoder()
self.Dec = decoder()
self.D1 = discriminator(self.n_attributes, self.config.nchw[-1])
self.D2 = discriminator(self.n_attributes, self.config.nchw[-1]//2)
self.adv_criterion = torch.nn.BCELoss()
self.recon_criterion = torch.nn.MSELoss()
self.restore_from_file()
self.set_mode_and_gpu()
def restore_from_file(self):
if self.restore is not None:
ckpt_file_enc = os.path.join(self.config.model_dir, 'Enc_iter_{:06d}.pth'.format(self.restore))
assert os.path.exists(ckpt_file_enc)
ckpt_file_dec = os.path.join(self.config.model_dir, 'Dec_iter_{:06d}.pth'.format(self.restore))
assert os.path.exists(ckpt_file_dec)
if self.gpu:
self.Enc.load_state_dict(torch.load(ckpt_file_enc), strict=False)
self.Dec.load_state_dict(torch.load(ckpt_file_dec), strict=False)
else:
self.Enc.load_state_dict(torch.load(ckpt_file_enc, map_location='cpu'), strict=False)
self.Dec.load_state_dict(torch.load(ckpt_file_dec, map_location='cpu'), strict=False)
if self.mode == 'train':
ckpt_file_d1 = os.path.join(self.config.model_dir, 'D1_iter_{:06d}.pth'.format(self.restore))
assert os.path.exists(ckpt_file_d1)
ckpt_file_d2 = os.path.join(self.config.model_dir, 'D2_iter_{:06d}.pth'.format(self.restore))
assert os.path.exists(ckpt_file_d2)
if self.gpu:
self.D1.load_state_dict(torch.load(ckpt_file_d1), strict=False)
self.D2.load_state_dict(torch.load(ckpt_file_d2), strict=False)
else:
self.D1.load_state_dict(torch.load(ckpt_file_d1, map_location='cpu'), strict=False)
self.D2.load_state_dict(torch.load(ckpt_file_d2, map_location='cpu'), strict=False)
self.start_step = self.restore + 1
else:
self.start_step = 1
def set_mode_and_gpu(self):
if self.mode == 'train':
self.Enc.train()
self.Dec.train()
self.D1.train()
self.D2.train()
self.writer = SummaryWriter(self.config.log_dir)
self.optimizer_G = torch.optim.Adam(chain(self.Enc.parameters(), self.Dec.parameters()),
lr=self.config.G_lr, betas=(0.5, 0.999),
weight_decay=self.config.weight_decay)
self.optimizer_D = torch.optim.Adam(chain(self.D1.parameters(), self.D2.parameters()),
lr=self.config.D_lr, betas=(0.5, 0.999),
weight_decay=self.config.weight_decay)
self.G_lr_scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer_G, step_size=self.config.step_size, gamma=self.config.gamma)
self.D_lr_scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer_D, step_size=self.config.step_size, gamma=self.config.gamma)
if self.restore is not None:
for _ in range(self.restore):
self.G_lr_scheduler.step()
self.D_lr_scheduler.step()
if self.gpu:
with torch.cuda.device(0):
self.Enc.cuda()
self.Dec.cuda()
self.D1.cuda()
self.D2.cuda()
self.adv_criterion.cuda()
self.recon_criterion.cuda()
if len(self.gpu) > 1:
self.Enc = torch.nn.DataParallel(self.Enc, device_ids=list(range(len(self.gpu))))
self.Dec = torch.nn.DataParallel(self.Dec, device_ids=list(range(len(self.gpu))))
self.D1 = torch.nn.DataParallel(self.D1, device_ids=list(range(len(self.gpu))))
self.D2 = torch.nn.DataParallel(self.D2, device_ids=list(range(len(self.gpu))))
elif self.mode == 'test':
self.Enc.eval()
self.Dec.eval()
if self.gpu:
with torch.cuda.device(0):
self.Enc.cuda()
self.Dec.cuda()
if len(self.gpu) > 1:
self.Enc = torch.nn.DataParallel(self.Enc, device_ids=list(range(len(self.gpu))))
self.Dec = torch.nn.DataParallel(self.Dec, device_ids=list(range(len(self.gpu))))
else:
raise NotImplementationError()
def tensor2var(self, tensors, volatile=False):
if not hasattr(tensors, '__iter__'): tensors = [tensors]
out = []
for tensor in tensors:
if len(self.gpu):
tensor = tensor.cuda(0)
var = torch.autograd.Variable(tensor, volatile=volatile)
out.append(var)
if len(out) == 1:
return out[0]
else:
return out
def get_attr_chs(self, encodings, attribute_id):
num_chs = encodings.size(1)
per_chs = float(num_chs) / self.n_attributes
start = int(np.rint(per_chs * attribute_id))
end = int(np.rint(per_chs * (attribute_id + 1)))
# return encodings[:, start:end]
return encodings.narrow(1, start, end-start)
def forward_G(self):
self.z_A, self.A_skip = self.Enc(self.A, return_skip=True)
self.z_B, self.B_skip = self.Enc(self.B, return_skip=True)
self.z_C = torch.cat([self.get_attr_chs(self.z_A, i) if i != self.attribute_id \
else self.get_attr_chs(self.z_B, i) for i in range(self.n_attributes)], 1)
self.z_D = torch.cat([self.get_attr_chs(self.z_B, i) if i != self.attribute_id \
else self.get_attr_chs(self.z_A, i) for i in range(self.n_attributes)], 1)
self.R_A = self.Dec(self.z_A, self.z_A, skip=self.A_skip)
self.R_B = self.Dec(self.z_B, self.z_B, skip=self.B_skip)
self.R_C = self.Dec(self.z_C, self.z_A, skip=self.A_skip)
self.R_D = self.Dec(self.z_D, self.z_B, skip=self.B_skip)
self.A1 = torch.clamp(self.A + self.R_A, -1, 1)
self.B1 = torch.clamp(self.B + self.R_B, -1, 1)
self.C = torch.clamp(self.A + self.R_C, -1, 1)
self.D = torch.clamp(self.B + self.R_D, -1, 1)
def forward_D_real_sample(self):
self.d1_A = self.D1(self.A, self.y_A)
self.d1_B = self.D1(self.B, self.y_B)
self.d2_A = self.D2(self.A, self.y_A)
self.d2_B = self.D2(self.B, self.y_B)
def forward_D_fake_sample(self, detach):
self.y_C, self.y_D = self.y_A.clone(), self.y_B.clone()
self.y_C.data[:, self.attribute_id] = self.y_B.data[:, self.attribute_id]
self.y_D.data[:, self.attribute_id] = self.y_A.data[:, self.attribute_id]
if detach:
self.d1_C = self.D1(self.C.detach(), self.y_C)
self.d1_D = self.D1(self.D.detach(), self.y_D)
self.d2_C = self.D2(self.C.detach(), self.y_C)
self.d2_D = self.D2(self.D.detach(), self.y_D)
else:
self.d1_C = self.D1(self.C, self.y_C)
self.d1_D = self.D1(self.D, self.y_D)
self.d2_C = self.D2(self.C, self.y_C)
self.d2_D = self.D2(self.D, self.y_D)
def compute_loss_D(self):
self.D_loss = {
'D1': self.adv_criterion(self.d1_A, torch.ones_like(self.d1_A)) + \
self.adv_criterion(self.d1_B, torch.ones_like(self.d1_B)) + \
self.adv_criterion(self.d1_C, torch.zeros_like(self.d1_C)) + \
self.adv_criterion(self.d1_D, torch.zeros_like(self.d1_D)),
'D2': self.adv_criterion(self.d2_A, torch.ones_like(self.d2_A)) + \
self.adv_criterion(self.d2_B, torch.ones_like(self.d2_B)) + \
self.adv_criterion(self.d2_C, torch.zeros_like(self.d2_C)) + \
self.adv_criterion(self.d2_D, torch.zeros_like(self.d2_D)),
}
self.loss_D = (self.D_loss['D1'] + 0.5 * self.D_loss['D2']) / 4
def compute_loss_G(self):
self.G_loss = {
'reconstruction': self.recon_criterion(self.A1, self.A) + self.recon_criterion(self.B1, self.B),
'adv1': self.adv_criterion(self.d1_C, torch.ones_like(self.d1_C)) + \
self.adv_criterion(self.d1_D, torch.ones_like(self.d1_D)),
'adv2': self.adv_criterion(self.d2_C, torch.ones_like(self.d2_C)) + \
self.adv_criterion(self.d2_D, torch.ones_like(self.d2_D)),
}
self.loss_G = 5 * self.G_loss['reconstruction'] + self.G_loss['adv1'] + 0.5 * self.G_loss['adv2']
def backward_D(self):
self.loss_D.backward()
self.optimizer_D.step()
def backward_G(self):
self.loss_G.backward()
self.optimizer_G.step()
def img_denorm(self, img, scale=255):
return (img + 1) * scale / 2.
def save_image_log(self, save_num=20):
image_info = {
'A/img' : self.img_denorm(self.A.data.cpu(), 1)[:save_num],
'B/img' : self.img_denorm(self.B.data.cpu(), 1)[:save_num],
'C/img' : self.img_denorm(self.C.data.cpu(), 1)[:save_num],
'D/img' : self.img_denorm(self.D.data.cpu(), 1)[:save_num],
'A1/img' : self.img_denorm(self.A1.data.cpu(), 1)[:save_num],
'B1/img' : self.img_denorm(self.B1.data.cpu(), 1)[:save_num],
'R_A/img' : self.img_denorm(self.R_A.data.cpu(), 1)[:save_num],
'R_B/img' : self.img_denorm(self.R_B.data.cpu(), 1)[:save_num],
'R_C/img' : self.img_denorm(self.R_C.data.cpu(), 1)[:save_num],
'R_D/img' : self.img_denorm(self.R_D.data.cpu(), 1)[:save_num],
}
for tag, images in image_info.items():
for idx, image in enumerate(images):
self.writer.add_image(tag+'/{}_{:02d}'.format(self.attribute_id, idx), image, self.step)
def save_sample_images(self, save_num=5):
canvas = torch.cat((self.A, self.B, self.C, self.D, self.A1, self.B1), -1)
img_array = np.transpose(self.img_denorm(canvas.data.cpu().numpy()), (0,2,3,1)).astype(np.uint8)
for i in range(save_num):
Image.fromarray(img_array[i]).save(os.path.join(self.config.img_dir, 'step_{:06d}_attr_{}_{:02d}.jpg'.format(self.step, self.attribute_id, i)))
def save_scalar_log(self):
scalar_info = {
'loss_D': self.loss_D.data.cpu().numpy()[0],
'loss_G': self.loss_G.data.cpu().numpy()[0],
'G_lr' : self.G_lr_scheduler.get_lr()[0],
'D_lr' : self.D_lr_scheduler.get_lr()[0],
}
for key, value in self.G_loss.items():
scalar_info['G_loss/' + key] = value.data[0]
for key, value in self.D_loss.items():
scalar_info['D_loss/' + key] = value.data[0]
for tag, value in scalar_info.items():
self.writer.add_scalar(tag, value, self.step)
def save_model(self):
reduced = lambda key: key[7:] if key.startswith('module.') else key
torch.save({reduced(key): val.cpu() for key, val in self.Enc.state_dict().items()}, os.path.join(self.config.model_dir, 'Enc_iter_{:06d}.pth'.format(self.step)))
torch.save({reduced(key): val.cpu() for key, val in self.Dec.state_dict().items()}, os.path.join(self.config.model_dir, 'Dec_iter_{:06d}.pth'.format(self.step)))
torch.save({reduced(key): val.cpu() for key, val in self.D1.state_dict().items()}, os.path.join(self.config.model_dir, 'D1_iter_{:06d}.pth'.format(self.step)))
torch.save({reduced(key): val.cpu() for key, val in self.D2.state_dict().items()}, os.path.join(self.config.model_dir, 'D2_iter_{:06d}.pth'.format(self.step)))
def train(self):
for self.step in range(self.start_step, 1 + self.config.max_iter):
self.G_lr_scheduler.step()
self.D_lr_scheduler.step()
for self.attribute_id in range(self.n_attributes):
A, y_A = next(self.dataset.gen(self.attribute_id, True))
B, y_B = next(self.dataset.gen(self.attribute_id, False))
self.A, self.y_A, self.B, self.y_B = self.tensor2var([A, y_A, B, y_B])
# forward
self.forward_G()
# update D
self.forward_D_real_sample()
self.forward_D_fake_sample(detach=True)
self.compute_loss_D()
self.optimizer_D.zero_grad()
self.backward_D()
# update G
self.forward_D_fake_sample(detach=False)
self.compute_loss_G()
self.optimizer_G.zero_grad()
self.backward_G()
if self.step % 100 == 0:
self.save_image_log()
if self.step % 2000 == 0:
self.save_sample_images()
print('step: %06d, loss D: %.6f, loss G: %.6f' % (self.step, self.loss_D.data.cpu().numpy(), self.loss_G.data.cpu().numpy()))
if self.step % 100 == 0:
self.save_scalar_log()
if self.step % 2000 == 0:
self.save_model()
print('Finished Training!')
self.writer.close()
def transform(self, *images):
transform1 = transforms.Compose([
transforms.Resize(self.config.nchw[-2:]),
transforms.ToTensor(),
])
transform2 = lambda x: x.view(1, *x.size()) * 2 - 1
out = [transform2(transform1(image)) for image in images]
return out
def swap(self):
'''
swap attributes of two images.
'''
self.attribute_id = self.args.swap_list[0]
self.B, self.A = self.tensor2var(self.transform(Image.open(self.args.input), Image.open(self.args.target[0])), volatile=True)
self.forward_G()
img = torch.cat((self.B, self.A, self.D, self.C), -1)
img = np.transpose(self.img_denorm(img.data.cpu().numpy()), (0,2,3,1)).astype(np.uint8)[0]
Image.fromarray(img).save('swap.jpg')
def linear(self):
'''
linear interpolation of two images.
'''
self.attribute_id = self.args.swap_list[0]
self.B, self.A = self.tensor2var(self.transform(Image.open(self.args.input), Image.open(self.args.target[0])), volatile=True)
self.z_A = self.Enc(self.A, return_skip=False)
self.z_B, self.B_skip = self.Enc(self.B, return_skip=True)
self.z_D = torch.cat([self.get_attr_chs(self.z_B, i) if i != self.attribute_id \
else self.get_attr_chs(self.z_A, i) for i in range(self.n_attributes)], 1)
m = self.args.size[0]
out = [self.B]
for i in range(1, 1+m):
z_i = float(i) / m * (self.z_D - self.z_B) + self.z_B
R_i = self.Dec(z_i, self.z_B, skip=self.B_skip)
D_i = torch.clamp(self.B + R_i, -1, 1)
out.append(D_i)
out.append(self.A)
out = torch.cat(out, -1)
img = np.transpose(self.img_denorm(out.data.cpu().numpy()), (0,2,3,1)).astype(np.uint8)[0]
Image.fromarray(img).save('linear_interpolation.jpg')
def matrix1(self):
'''
matrix interpolation with respect to one attribute.
'''
self.attribute_id = self.args.swap_list[0]
self.B = self.tensor2var(self.transform(Image.open(self.args.input)), volatile=True)
self.As = [self.tensor2var(self.transform(Image.open(self.args.target[i])), volatile=True) for i in range(3)]
self.z_B, self.B_skip = self.Enc(self.B, return_skip=True)
self.z_As = [self.Enc(self.As[i], return_skip=False) for i in range(3)]
self.z_Ds = [torch.cat([self.get_attr_chs(self.z_B, i) if i != self.attribute_id \
else self.get_attr_chs(self.z_As[j], i) for i in range(self.n_attributes)], 1)
for j in range(3)]
m, n = self.args.size
h, w = self.config.nchw[-2:]
out = torch.ones(1, 3, m * h, n * w)
for i in range(m):
for j in range(n):
a = i / float(m - 1)
b = j / float(n - 1)
four = [(1-a) * (1-b), (1-a) * b, a * (1-b), a * b]
z_ij = four[0] * self.z_B + four[1] * self.z_Ds[0] + four[2] * self.z_Ds[1] + four[3] * self.z_Ds[2]
R_ij = self.Dec(z_ij, self.z_B, skip=self.B_skip)
D_ij = torch.clamp(self.B + R_ij, -1, 1)
out[:,:, i*h:(i+1)*h, j*w:(j+1)*w] = D_ij.data.cpu()
first_col = torch.cat((self.B.data.cpu(), torch.ones(1,3,(m-2)*h,w), self.As[1].data.cpu()), -2)
last_col = torch.cat((self.As[0].data.cpu(), torch.ones(1,3,(m-2)*h,w), self.As[2].data.cpu()), -2)
canvas = torch.cat((first_col, out, last_col), -1)
img = np.transpose(self.img_denorm(canvas.numpy()), (0,2,3,1)).astype(np.uint8)[0]
Image.fromarray(img).save('matrix_interpolation1.jpg')
def matrix2(self):
'''
matrix interpolation with respect to two attributes simultaneously.
'''
self.attribute_ids = self.args.swap_list
self.B, self.A1, self.A2 = self.tensor2var(self.transform(Image.open(self.args.input), Image.open(self.args.target[0]), Image.open(self.args.target[1])), volatile=True)
self.z_B, self.B_skip = self.Enc(self.B, return_skip=True)
self.z_A1, self.z_A2 = self.Enc(self.A1, return_skip=False), self.Enc(self.A2, return_skip=False)
self.z_D1 = torch.cat([self.get_attr_chs(self.z_B, i) if i != self.attribute_ids[0]
else self.get_attr_chs(self.z_A1, i) for i in range(self.n_attributes)], 1)
self.z_D2 = torch.cat([self.get_attr_chs(self.z_B, i) if i != self.attribute_ids[1]
else self.get_attr_chs(self.z_A2, i) for i in range(self.n_attributes)], 1)
m, n = self.args.size
h, w = self.config.nchw[-2:]
out = torch.ones(1, 3, m * h, n * w)
for i in range(m):
for j in range(n):
a = i / float(m - 1)
b = j / float(n - 1)
z_ij = a * self.z_D1 + b * self.z_D2 + (1 - a - b) * self.z_B
R_ij = self.Dec(z_ij, self.z_B, skip=self.B_skip)
D_ij = torch.clamp(self.B + R_ij, -1, 1)
out[:,:, i*h:(i+1)*h, j*w:(j+1)*w] = D_ij.data.cpu()
first_col = torch.cat((self.B.data.cpu(), torch.ones(1,3,(m-2)*h,w), self.A1.data.cpu()), -2)
last_col = torch.cat((self.A2.data.cpu(), torch.ones(1,3,(m-1)*h,w)), -2)
canvas = torch.cat((first_col, out, last_col), -1)
img = np.transpose(self.img_denorm(canvas.numpy()), (0,2,3,1)).astype(np.uint8)[0]
Image.fromarray(img).save('matrix_interpolation2.jpg')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-a', '--attributes', nargs='+', type=str, help='Specify attribute names.')
parser.add_argument('-g', '--gpu', default=[], nargs='+', type=str, help='Specify GPU ids.')
parser.add_argument('-m', '--mode', default='train', type=str, choices=['train', 'test'])
parser.add_argument('-r', '--restore', default=None, action='store', type=int, help='Specify checkpoint id to restore')
# test parameters
parser.add_argument('--swap', action='store_true', help='Swap attributes.')
parser.add_argument('--linear', action='store_true', help='Linear interpolation.')
parser.add_argument('--matrix', action='store_true', help='Matraix interpolation with respect to one attribute.')
parser.add_argument('--swap_list', default=[], nargs='+', type=int, help='Specify the attributes ids for swapping.')
parser.add_argument('-i', '--input', type=str, help='Specify the input image.')
parser.add_argument('-t', '--target', nargs='+', type=str, help='Specify target images.')
parser.add_argument('-s', '--size', nargs='+', type=int, help='Specify the interpolation size.')
args = parser.parse_args()
print(args)
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(args.gpu)
if args.mode == 'test':
assert args.swap + args.linear + args.matrix == 1
assert args.restore is not None
model = ELEGANT(args)
if args.mode == 'train':
model.train()
elif args.mode == 'test' and args.swap:
assert len(args.swap_list) == 1 and args.input and len(args.target) == 1
model.swap()
elif args.mode == 'test' and args.linear:
assert len(args.swap_list) == 1 and len(args.size) == 1
model.linear()
elif args.mode == 'test' and args.matrix:
assert len(args.swap_list) in [1,2]
if len(args.swap_list) == 1:
assert len(args.target) == 3 and len(args.size) == 2
model.matrix1()
elif len(args.swap_list) == 2:
assert len(args.target) == 2 and len(args.size) == 2
model.matrix2()
else:
raise NotImplementationError()
if __name__ == "__main__":
main()