-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification.py
220 lines (173 loc) · 6.5 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# -*- coding: utf-8 -*-
"""Untitled1.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1nRrFJEcWFJl9lRHMfMMvh9oG6U6NlWmf
"""
# Imports here
import matplotlib.pyplot as plt
import seaborn as sb
# %reload_ext autoreload
# %autoreload 0
# %matplotlib inline
# %config InlineBackend.figure_format = 'retina'
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
from PIL import Image
from torch.autograd import Variable
import json
from collections import OrderedDict
import math
plt.ion()
!pip install --no-cache-dir -I pillow
!wget -c https://www.kaggle.com/vbookshelf/v2-plant-seedlings-dataset/downloads/v2-plant-seedlings-dataset.zip/1
!unzip v2-plant-seedlings-dataset
data_dir = 'v2-plant-seedlings-dataset'
train_dir = data_dir + 'train'
valid_dir = data_dir + 'valid'
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'valid': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir='v2-plant-seedlings-dataset'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=8, shuffle=True, num_workers=4) for x in ['train', 'valid']}
import json
with open('cat_to_name.json', 'r') as f:
cat_to_name = json.load(f)
!wget -cq https://github.com/PratyushaThumiki/msme/blob/master/cat_to_name.json
images,labels = next(iter(dataloaders_dict["train"]))
plt.imshow(images[0,0])
model = models.densenet121(pretrained=True)
model
input_size=5299
hidden_layers=500
output_size=529
for param in model.parameters():
param.requires_grad= False
from collections import OrderedDict
classifier = nn.Sequential(OrderedDict([
('fc1', nn.Linear(input_size, hidden_layers)),
('relu', nn.ReLU()),
('fc2', nn.Linear(hidden_layers,output_size)),
('output',nn.LogSoftmax(dim=1))
]))
model.classifier = classifier
n_epochs = 30
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.classifier.parameters(), lr=0.001)
train_loader=dataloaders_dict["train"]
valid_loader=dataloaders_dict["valid"]
train_on_gpu=torch.cuda.is_available()
valid_loss_min = np.Inf # track change in validation loss
for epoch in range(1, n_epochs+1):
train_loss = 0.0
valid_loss = 0.0
# train the model
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
# move tensors to GPU if CUDA is available
if train_on_gpu:
data, target = data.cuda(), target.cuda()
model.cuda()
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# update training loss
train_loss += loss.item()*data.size(0)
# validate the model
model.eval()
for batch_idx, (data, target) in enumerate(valid_loader):
# move tensors to GPU if CUDA is available
if train_on_gpu:
data, target = data.cuda(), target.cuda()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
# update average validation loss
valid_loss += loss.item()*data.size(0)
# calculate average losses
train_loss = train_loss/len(train_loader.dataset)
valid_loss = valid_loss/len(valid_loader.dataset)
# print training/validation statistics
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch, train_loss, valid_loss))
if valid_loss <= valid_loss_min:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(
valid_loss_min,
valid_loss))
model_state = {
'state_dict': model.state_dict(),
'optimizer_dict': optimizer.state_dict(),
'classifier': classifier,
}
torch.save(model_state, path)
valid_loss_min = valid_loss
classes = list(cat_to_name.keys())
# track valid loss
valid_loss = 0.0
class_correct = list(0. for i in range(102))
class_total = list(0. for i in range(102))
model.eval()
# iterate over valid data
for data, target in valid_loader:
# move tensors to GPU if CUDA is available
if train_on_gpu:
data, target = data.cuda(), target.cuda()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
# update valid loss
valid_loss += loss.item()*data.size(0)
# convert output probabilities to predicted class
_, pred = torch.max(output, 1)
# compare predictions to true label
correct_tensor = pred.eq(target.data.view_as(pred))
correct = np.squeeze(correct_tensor.numpy()) if not train_on_gpu else np.squeeze(correct_tensor.cpu().numpy())
# calculate valid accuracy for each object class
for i in range(target.data.cpu().numpy().size):
label = target.data[i]
class_correct[label] += correct[i].item()
class_total[label] += 1
# average valid loss
valid_loss = valid_loss/len(valid_loader.dataset)
print('valid Loss: {:.6f}\n'.format(valid_loss))
for i in range(10):
if class_total[i] > 0:
print('valid Accuracy of %5s: %2d%% (%2d/%2d)' % (
classes[i], 100 * class_correct[i] / class_total[i],
np.sum(class_correct[i]), np.sum(class_total[i])))
else:
print('Valid Accuracy of %5s: N/A (no training examples)' % (classes[i]))
print('\nValid Accuracy (Overall): %2d%% (%2d/%2d)' % (
100. * np.sum(class_correct) / np.sum(class_total),
np.sum(class_correct), np.sum(class_total)))
model_state = torch.load(path)
model = models.densenet121(pretrained=True)
model.classifier = model_state['classifier']
model.load_state_dict(model_state['state_dict'], strict=False)
model.cuda()