-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_ours.py
206 lines (176 loc) · 8.49 KB
/
main_ours.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import argparse
import glob
import logging
import sys
import os
import torch
from torch_scatter import scatter_add
from tqdm import tqdm
import torch.nn.functional as F
import torch.nn as nn
from torch_geometric.nn import GCNConv
from complete import Complete, convert_edge2adj, normalize, _complete_acc
from utils import normalize_features, create_exp_dir, save_checkpoint, load_dataset
from models import GRCN, GRCN_fast
import importlib
import math
import time
import dataprocess
from torch.optim.lr_scheduler import *
import numpy as np
import random
# SYS_SEED = 42
EOS = 1e-10
def test_model(model, data, complete_model, args):
model.eval()
correct = 0
for batch_data in dataprocess.dataloader(data, complete_model.loop_adj_part, args.batch_size, args.sparse):
batch_data.to(device)
_, pred = model(batch_data.x, batch_data.adj).max(dim=1)
correct += pred[batch_data.test_mask].eq(batch_data.y[batch_data.test_mask]).sum().item()
acc = correct / data.test_mask.sum().item()
model.train()
return acc
def eval_model(model, data, complete_model, args):
model.eval()
correct = 0
loss = 0
for batch_data in dataprocess.dataloader(data, complete_model.loop_adj_part, args.batch_size, args.sparse):
batch_data.to(device)
output = model(batch_data.x, batch_data.adj)
_, pred = output.max(dim=1)
correct += pred[batch_data.val_mask].eq(batch_data.y[batch_data.val_mask]).sum().item()
loss += F.nll_loss(output[batch_data.val_mask], batch_data.y[batch_data.val_mask]).item()
acc = correct / data.val_mask.sum().item()
model.train()
return acc, loss
def lr_decay(optimizer):
pass
parser = argparse.ArgumentParser(description='PyTorch Enhance NC by GC Model')
parser.add_argument('--dataset', type=str, default='Cora',
help='dataset to use, [Cora, CiteSeer, PubMed]')
parser.add_argument("--sample", type=float, default=1.0,
help="sample ratio of edges")
parser.add_argument('--complete', type=str, default='None',
help='method for graph completion, [None, Graph, Both]')
parser.add_argument('--num', type=int, default=100,
help='number of edges to complete')
parser.add_argument('--seed', type=int, default=42,
help='ramdom seed for sampling')
parser.add_argument('--dataseed', type=int, default=42,
help='ramdom seed for data split')
parser.add_argument('--compl_param', type=str, default="no",
help='hyper parameters for completion method [10:1:2] use : to split')
parser.add_argument('--keep_train_num', action='store_true',
help='whether to fix the training label')
parser.add_argument('--save', action='store_true',
help='whether to save result, default False')
parser.add_argument('--dense', action='store_true',
help='whether to use dense adjacency matrix, default False')
parser.add_argument('--sparse', action='store_true',
help='whether to use sparse adjacency matrix, default False')
parser.add_argument('--reduce', type=str, default="knn",
help='method to reduce adj matrix, knn, threshold or topk')
parser.add_argument('--graphloss', action='store_true',
help='whether to use graph based unsupervised loss, default False')
parser.add_argument('--wd_graph', type=float, default=0.,
help='weight decay for graph learning parameters')
parser.add_argument('--alpha', type=float, default=1.,
help='weight of unsupervised loss')
parser.add_argument('--hid_graph', type=str, default="100:10",
help='hidden dimension of graph learning conv layer')
parser.add_argument('--patience', type=int, default=5,
help='patience for early stopping')
parser.add_argument('--train_num', type=int, default=20,
help='number of training labels per class')
parser.add_argument('--run_times', type=int, default=10,
help='Independent run times')
args = parser.parse_args()
config_file = "config.config_%s" % args.dataset
if args.dataseed == -1:
params = importlib.import_module(config_file).params_fixed
else:
params = importlib.import_module(config_file).params_random
args = argparse.Namespace(**vars(args), **params)
torch.random.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
if args.save:
if args.dataset in ["CoraFull", "Computers", "Photo", "CS"]:
nsave = "log/{}-{}/sample-{}/{}".format(args.dataset, args.train_num, args.sample, args.complete)
else:
if not args.keep_train_num:
nsave = "log/{}/sample-{}/{}".format(args.dataset, args.sample, args.complete)
else:
nsave = "log/{}-keep/sample-{}/{}".format(args.dataset, args.sample, args.complete)
else:
print("not saving file")
nsave = "log/trash/{}".format(args.complete)
create_exp_dir(nsave)#, scripts_to_save=glob.glob('*.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p', filemode="w")
nfile = "para{}-nhid{}-lr{}-lrg{}-hidg{}-wd{}-dr{}-layer{}-norm{}-seed{}-{}".format(
args.compl_param, args.nhid, args.lr, args.lr_graph, args.hid_graph, args.wd,
args.dropout, args.layertype, args.normalize, args.seed, args.dataseed)
fh = logging.FileHandler(os.path.join(nsave, nfile + ".txt"), "w")
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
dataset = load_dataset(args.dataset)
logging.info('Original {} #nodes {} #edges {} #features {} #classes {}'.format
(dataset, dataset[0].num_nodes, int(dataset[0].num_edges/2), dataset.num_features, dataset.num_classes))
ori_edge_index = dataset[0].edge_index
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# device = torch.device("cpu")
logging.info('Using {} for neural network training'.format(device))
sample_ratio = args.sample
sample_seed = args.seed
compl_param = args.compl_param.split(":")
compl_acc_list = []
deg_sum_all, deg_correct_all = 0, 0
sampled_edge_index = dataprocess.sample_edge(ori_edge_index, ratio=sample_ratio, seed=sample_seed)
logging.info('Sub-sampled {} #edges {}'.format(dataset, int(sampled_edge_index.shape[1]/2)))
data = dataset[0]
# data.name = args.dataset
dataprocess.random_split(data, args.dataseed, args)
model = eval(args.complete).Model(data.num_nodes, dataset.num_features, dataset.num_classes, device, args).to(device)
optimizer_base = torch.optim.Adam(model.base_parameters(), lr=args.lr, weight_decay=args.wd)
optimizer_graph = torch.optim.Adam(model.graph_parameters(), lr=args.lr_graph, weight_decay=args.wd_graph)
complete_device = torch.device("cpu")
complete_model = Complete(sampled_edge_index, data, model, complete_device, args)
compl_acc = 0.
model.train()
val_acc_epoch_list, best_val_acc = [], 0.
val_loss_epoch_list, best_val_loss = [], 1e10
final_test_acc = 0.
lr_base, lr_graph = args.lr, args.lr_graph
for epoch in range(args.epochs):
# Optimize GCN
train_loss = []
for batch_data in dataprocess.dataloader(data, complete_model.loop_adj_part, args.batch_size, args.sparse):
batch_data.to(device)
optimizer_graph.zero_grad()
optimizer_base.zero_grad()
out = model(batch_data.x, batch_data.adj)
loss = F.nll_loss(out[batch_data.train_mask], batch_data.y[batch_data.train_mask])
train_loss.append(loss.item())
loss.backward(retain_graph=False)
if epoch % 1 == 0:
optimizer_base.step()
if epoch % 1 == 0:
optimizer_graph.step()
if (epoch+1) % args.log_epoch == 0:
val_acc, val_loss = eval_model(model, data, complete_model, args)
val_acc_epoch_list.append(val_acc)
val_loss_epoch_list.append(val_loss)
test_acc = test_model(model, data, complete_model, args)
logging.info('Epoch: {} Loss: {:.3f} Val Acc: {:.3f} {:.3f} Test Vcc: {:.3f}'.format(
epoch, np.mean(train_loss), val_acc_epoch_list[-1], val_loss, test_acc))
if val_acc_epoch_list[-1] > best_val_acc:
best_val_acc = val_acc_epoch_list[-1]
final_test_acc = test_acc
logging.info("Update best val acc {:.3f} test vcc: {:.3f}".format(
best_val_acc, test_acc))
logging.info('Classification Val Acc: {:.2f}%'.format(best_val_acc*100))
logging.info('Classification Test Acc: {:.2f}%'.format(final_test_acc*100))