-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTest_setup.py
582 lines (528 loc) · 21.4 KB
/
Test_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
import os
import sys
import io
from openai import OpenAI
client = OpenAI()
import pinecone
import streamlit as st
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores.pinecone import Pinecone
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo
from pinecone_text.sparse import BM25Encoder
from langchain.agents import create_csv_agent
from langchain.agents import Tool, AgentType, initialize_agent
from langchain.chat_models import ChatOpenAI
from langchain.utilities import GoogleSerperAPIWrapper
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from myfunc.mojafunkcija import (
st_style,
positive_login,
StreamHandler,
StreamlitRedirect,
init_cond_llm,
open_file,
)
# setup stranica
st.set_page_config(page_title="Multi Tool Chatbot", page_icon="👉", layout="wide")
st_style()
# prebaciti u mojafunkcija ?
def app_version():
version = "21.10.23. - Hybrid i Semantic with Score, Chatbot sa memorijom, Google-om, 3 indexa i CSV agentom - Neprecizni opisi alata i agent promptovi"
st.markdown(
f"<p style='font-size: 10px; color: grey;'>{version}</p>",
unsafe_allow_html=True,
)
# setup aplikacije
def app_setup():
if "name_semantic" not in st.session_state:
st.session_state.name_semantic = "positive"
if "name_self" not in st.session_state:
st.session_state.name_self = "sistematizacija3"
if "name_hybrid" not in st.session_state:
st.session_state.name_hybrid = "pravnikkraciprazan"
if "broj_k" not in st.session_state:
st.session_state.broj_k = 3
if "alpha" not in st.session_state:
st.session_state.alpha = None
if "score" not in st.session_state:
st.session_state.score = None
if "uploaded_file" not in st.session_state:
st.session_state.uploaded_file = None
if "direct_semantic" not in st.session_state:
st.session_state.direct_semantic = None
if "direct_hybrid" not in st.session_state:
st.session_state.direct_hybrid = None
if "direct_self" not in st.session_state:
st.session_state.direct_self = None
if "direct_csv" not in st.session_state:
st.session_state.direct_csv = None
if "input_prompt" not in st.session_state:
st.session_state.input_prompt = None
st.subheader("Multi Tool Chatbot")
with st.expander("Pročitajte uputstvo 🧜♂️"):
st.caption(
"""
Na ovom mestu podesavate parametre sistema za testiranje. Za rad CSV agenta potrebno je da uploadujete csv fajl sa struktuiranim podacima.
Za rad ostalih agenata potrebno je da odlucit eda li cete korisiti originalni prompt ili upit koji formira agent. Takodje, odaberite namespace za svaki metod.
Izborom izlaza odlucujete da li ce se odgovor vratiti direktno iz alata ili ce se korisiti dodatni LLM za formiranje odgovora.
Za hybrid search odredite koeficijent alpha koji odredjuje koliko ce biti zastupljena pretraga po kljucnim recima, a koliko po semantickom znacenju.
Mozete odabrati i broj dokumenata koji se vracaju iz indeksa.
Testiramo rad BIS i Pravnik sa upotrebom agenta. Na setup stranici mozete postaviti parametre za rad.
Trenutno podesavanje tipa agenta, prompta agenta i opisi alata nisu podesivi iz korisnickog interfejsa.
Trenutno nije u upotrebi Score limit za semantic search, koji vraca odgovor uvek ako je prozvan.
Ovo su parametri koji ce se testirati u sledecim iteracijama.
"""
)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.session_state.name_semantic = st.selectbox(
"Namespace za Semantic",
(
"positive",
"miljan",
"pravnikprazan",
"pravnikprefix",
"pravnikschema",
"pravnikfull",
"bisprazan",
"bisprefix",
"bisschema",
"bisfull",
"koder",
),
help="Pitanja o Positive uopstena",
)
with col2:
st.session_state.name_self = st.selectbox(
"Namespace za SelfQuery",
("sistematizacija3",),
help="Pitanja o meta poljima",
)
with col3:
st.session_state.name_hybrid = st.selectbox(
"Namespace za Hybrid",
(
"pravnikkraciprazan",
"pravnikkraciprefix",
"pravnikkracischema",
"pravnikkracifull",
"bishybridprazan",
"bishybridprefix",
"bishybridschema",
"bishybridfull",
"pravnikprazan",
"pravnikprefix",
"pravnikschema",
"pravnikfull",
"bisprazan",
"bisprefix",
"bisschema",
"bisfull",
),
help="Pitanja o opisu radnih mesta",
)
with col1:
st.session_state.direct_semantic = st.radio(
"Direktan odgovor - Semantic",
[True, False],
key="semantic_key",
horizontal=True,
help="Pitanja o Positive uopstena",
)
with col3:
st.session_state.direct_hybrid = st.radio(
"Direktan odgovor - Hybrid",
[True, False],
horizontal=True,
help="Pitanja o opisu radnih mesta",
)
with col2:
st.session_state.direct_self = st.radio(
"Direktan odgovor - SelfQuery",
[True, False],
horizontal=True,
help="Pitanja o meta poljima",
)
with col5:
st.session_state.alpha = st.slider(
"Hybrid keyword/semantic",
0.0,
1.0,
0.5,
0.1,
help="Koeficijent koji određuje koliko će biti zastupljena pretraga po ključnim rečima, a koliko po semantičkom značenju. 0-0.4 pretezno Kljucne reci , 0.5 podjednako, 0.6-1 pretezno semanticko znacenje",
)
st.session_state.score = st.slider(
"Set score",
0.00,
2.00,
0.50,
0.01,
help="Koeficijent koji određuje kolji će biti prag relevantnosti dokumenata uzetih u obzir za odgovore kod semantic i hybrid searcha. 0 je svi dokumenti, veci broj je stroziji kriterijum. Score u hybrid searchu moze biti proizvoljno veliki.",
)
st.session_state.input_prompt = st.radio(
"Originalni prompt?",
[True, False],
key="input_prompt_key",
horizontal=True,
help="Ako je odgovor False, onda se koristi upit koji formira Agent",
)
with col4:
st.session_state.broj_k = st.number_input(
"Broj dokumenata - svi indexi",
min_value=1,
max_value=5,
value=3,
step=1,
key="broj_k_key",
help="Broj dokumenata koji se vraćaju iz indeksa",
)
st.session_state.direct_csv = st.radio(
"Direktan odgovor - CSV",
[True, False],
help="Pitanja o struktuiranim podacima",
horizontal=True,
)
# citanje csv fajla i pretraga po njemu
def read_csv(upit):
agent = create_csv_agent(
ChatOpenAI(temperature=0),
st.session_state.uploaded_file.name,
verbose=True,
agent_type=AgentType.OPENAI_FUNCTIONS,
handle_parsing_errors=True,
)
# za prosledjivanje originalnog prompta alatu alternativa je upit
if st.session_state.input_prompt == True:
odgovor = agent.run(st.session_state.fix_prompt)
else:
odgovor = agent.run(upit)
return str(odgovor)
# semantic search - klasini model
def rag(upit):
# Initialize Pinecone
pinecone.init(
api_key=os.environ["PINECONE_API_KEY"],
environment=os.environ["PINECONE_API_ENV"],
)
index_name = "embedings1"
index = pinecone.Index(index_name)
text = "text"
# verizja sa score-om
# za prosledjivanje originalnog prompta alatu alternativa je upit
if st.session_state.input_prompt == True:
ceo_odgovor = Pinecone(
index=index,
embedding=OpenAIEmbeddings(),
text_key=text,
namespace=st.session_state.name_semantic,
).similarity_search_with_score(
st.session_state.fix_prompt, k=st.session_state.broj_k
)
else:
ceo_odgovor = Pinecone(
index=index,
embedding=OpenAIEmbeddings(),
text_key=text,
namespace=st.session_state.name_semantic,
).similarity_search_with_score(upit, k=st.session_state.broj_k)
odgovor = ""
for item in ceo_odgovor:
page_cont = item[0].page_content
decimal_number = item[1]
if decimal_number >= st.session_state.score:
st.info(f"Score: {decimal_number}")
odgovor += page_cont + "\n\n"
return odgovor
# selfquery search - pretrazuje po meta poljima
def selfquery(upit):
# Initialize Pinecone
pinecone.init(
api_key=os.environ["PINECONE_API_KEY"],
environment=os.environ["PINECONE_API_ENV"],
)
llm = ChatOpenAI(temperature=0)
# Define metadata fields obratiti paznju
metadata_field_info = [
AttributeInfo(name="title", description="Tema dokumenta", type="string"),
AttributeInfo(name="keyword", description="reci za pretragu", type="string"),
AttributeInfo(
name="text", description="The Content of the document", type="string"
),
AttributeInfo(
name="source", description="The Source of the document", type="string"
),
]
# Define document content description
document_content_description = "Sistematizacija radnih mesta"
index_name = "embedings1"
text = "text"
# Izbor stila i teme
index = pinecone.Index(index_name)
vector = Pinecone.from_existing_index(
index_name=index_name,
embedding=OpenAIEmbeddings(),
text_key=text,
namespace=st.session_state.name_self,
)
ret = SelfQueryRetriever.from_llm(
llm,
vector,
document_content_description,
metadata_field_info,
enable_limit=True,
verbose=True,
search_kwargs={"k": st.session_state.broj_k},
)
# za prosledjivanje originalnog prompta alatu alternativa je upit
if st.session_state.input_prompt == True:
ceo_odgovor = ret.get_relevant_documents(st.session_state.fix_prompt)
else:
ceo_odgovor = ret.get_relevant_documents(upit)
odgovor = ""
for member in ceo_odgovor:
odgovor += member.page_content + "\n\n"
return odgovor
# hybrid search - kombinacija semantic i selfquery metoda po kljucnoj reci
def hybrid_query(upit):
# Initialize Pinecone
pinecone.init(
api_key=os.environ["PINECONE_API_KEY_POS"],
environment=os.environ["PINECONE_ENVIRONMENT_POS"],
)
# # Initialize OpenAI embeddings
# embeddings = OpenAIEmbeddings()
index_name = "bis"
index = pinecone.Index(index_name)
# za prosledjivanje originalnog prompta alatu alternativa je upit
if st.session_state.input_prompt == True:
ceo_odgovor = st.session_state.fix_prompt
else:
ceo_odgovor = upit
odgovor = ""
def get_embedding(text, model="text-embedding-ada-002"):
text = text.replace("\n", " ")
return client.embeddings.create(input=[text], model=model)["data"][0][
"embedding"
]
def hybrid_score_norm(dense, sparse, alpha: float):
"""Hybrid score using a convex combination
alpha * dense + (1 - alpha) * sparse
Args:
dense: Array of floats representing
sparse: a dict of `indices` and `values`
alpha: scale between 0 and 1
"""
if alpha < 0 or alpha > 1:
raise ValueError("Alpha must be between 0 and 1")
hs = {
"indices": sparse["indices"],
"values": [v * (1 - alpha) for v in sparse["values"]],
}
return [v * alpha for v in dense], hs
def hybrid_query(question, top_k, alpha):
bm25 = BM25Encoder().default()
sparse_vector = bm25.encode_queries(question)
dense_vector = get_embedding(question)
hdense, hsparse = hybrid_score_norm(
dense_vector, sparse_vector, alpha=st.session_state.alpha
)
result = index.query(
top_k=top_k,
vector=hdense,
alpha=alpha,
sparse_vector=hsparse,
include_metadata=True,
namespace=st.session_state.name_hybrid,
)
# return search results as dict
return result.to_dict()
# st.session_state.tematika = vectorstore.get_relevant_documents(zahtev)
st.session_state.tematika = hybrid_query(
ceo_odgovor, top_k=st.session_state.broj_k, alpha=st.session_state.alpha
)
for ind, item in enumerate(st.session_state.tematika["matches"]):
if item["score"] > st.session_state.score:
st.info(f'Za odgovor broj {ind + 1} score je {item["score"]}')
odgovor += item["metadata"]["context"] + "\n\n"
return odgovor
# pocinje novi chat, brise se memorija
def new_chat():
st.session_state["generated"] = []
st.session_state["past"] = []
st.session_state["input"] = ""
st.session_state.memory.clear()
st.session_state["messages"] = []
# glavna aplikacija - Chatbot
def main():
app_setup()
with st.sidebar:
app_version()
st.button("New Chat", on_click=new_chat)
model, temp = init_cond_llm()
st.session_state.uploaded_file = st.file_uploader(
"Choose a CSV file", accept_multiple_files=False, type="csv", key="csv_key"
)
if st.session_state.uploaded_file is not None:
with io.open(st.session_state.uploaded_file.name, "wb") as file:
file.write(st.session_state.uploaded_file.getbuffer())
if "generated" not in st.session_state:
st.session_state["generated"] = []
if "cot" not in st.session_state:
st.session_state["cot"] = ""
if "past" not in st.session_state:
st.session_state["past"] = []
if "input" not in st.session_state:
st.session_state["input"] = ""
if "messages" not in st.session_state:
st.session_state["messages"] = []
search = GoogleSerperAPIWrapper()
# definicija alata - vazno definisati kvalitetno description !!! - videti kako da ne koristi nista ako ne mora, mozda je u promptu agenta?
st.session_state.tools = [
Tool(
name="search",
func=search.run,
description="Google search tool. Useful when you need to answer questions about recent events or if someone asks for the current time or date.",
),
Tool(
name="Semantic search",
func=rag,
verbose=True,
description="Useful for when you are asked about topics including Positive doo and their portfolio. Input should contain Positive.",
return_direct=st.session_state.direct_semantic,
),
Tool(
name="Hybrid search",
func=hybrid_query,
verbose=True,
description="Useful for when you are asked about topics that will list items about opis radnih mesta.",
return_direct=st.session_state.direct_hybrid,
),
Tool(
name="Self search",
func=selfquery,
verbose=True,
description="Useful for when you are asked about topics that will look for keyword.",
return_direct=st.session_state.direct_self,
),
Tool(
name="CSV search",
func=read_csv,
verbose=True,
description="Useful for when you are asked about structured data like numbers, counts or sums",
return_direct=st.session_state.direct_csv,
),
]
download_str = []
if "open_api_key" not in st.session_state:
# Retrieving API keys from env
st.session_state.open_api_key = os.environ.get("OPENAI_API_KEY")
# Read OpenAI API key from env
if "SERPER_API_KEY" not in st.session_state:
# Retrieving API keys from env
st.session_state.SERPER_API_KEY = os.environ.get("SERPER_API_KEY")
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferWindowMemory(
memory_key="chat_history", return_messages=True, k=4
)
if "sistem" not in st.session_state:
st.session_state.sistem = open_file("prompt_turbo.txt")
if "odgovor" not in st.session_state:
st.session_state.odgovor = open_file("odgovor_turbo.txt")
if "system_message_prompt" not in st.session_state:
st.session_state.system_message_prompt = (
SystemMessagePromptTemplate.from_template(st.session_state.sistem)
)
if "human_message_prompt" not in st.session_state:
st.session_state.human_message_prompt = (
HumanMessagePromptTemplate.from_template("{text}")
)
# za prosledjivanje originalnog prompta alatu
if "fix_prompt" not in st.session_state:
st.session_state.fix_prompt = ""
if "chat_prompt" not in st.session_state:
st.session_state.chat_prompt = ChatPromptTemplate.from_messages(
[
st.session_state.system_message_prompt,
st.session_state.human_message_prompt,
]
)
name = st.session_state.get("name")
placeholder = st.empty()
pholder = st.empty()
with pholder.container():
if "stream_handler" not in st.session_state:
st.session_state.stream_handler = StreamHandler(pholder)
st.session_state.stream_handler.reset_text()
chat = ChatOpenAI(
openai_api_key=st.session_state.open_api_key,
temperature=temp,
model=model,
streaming=True,
callbacks=[st.session_state.stream_handler],
)
upit = []
if upit := st.chat_input("Postavite pitanje"):
formatted_prompt = st.session_state.chat_prompt.format_prompt(
text=upit
).to_messages()
# prompt[0] je system message, prompt[1] je tekuce pitanje
pitanje = formatted_prompt[0].content + formatted_prompt[1].content
with placeholder.container():
st_redirect = StreamlitRedirect()
sys.stdout = st_redirect
# za prosledjivanje originalnog prompta alatu
st.session_state.fix_prompt = pitanje
#
# testirati sa razlicitim agentima i prompt template-ima !!!
#
agent_chain = initialize_agent(
tools=st.session_state.tools,
llm=chat,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
messages=st.session_state.chat_prompt,
verbose=True,
memory=st.session_state.memory,
handle_parsing_errors=True,
max_iterations=4,
)
st.caption(
f"Originalni prompt: {st.session_state.input_prompt}, Semantic izlaz: {st.session_state.direct_semantic}, SelfQuery izlaz: {st.session_state.direct_self}, Hybrid izlaz: {st.session_state.direct_hybrid}, CSV izlaz: {st.session_state.direct_csv}, Alpha za Hybrid: {st.session_state.alpha} "
)
st.caption(
f"Broj dokumenata: {st.session_state.broj_k}, Namsepace Semantic: {st.session_state.name_semantic}, Namespace SelfQuery: {st.session_state.name_self}, Namespace Hybrid: {st.session_state.name_hybrid}, Score: {st.session_state.score} "
)
output = agent_chain.invoke(input=pitanje)
output_text = output.get("output", "")
# output_text = chat.predict(pitanje)
st.session_state.stream_handler.clear_text()
st.session_state.past.append(f"{name}: {upit}")
st.session_state.generated.append(f"AI Asistent: {output_text}")
# Calculate the length of the list
num_messages = len(st.session_state["generated"])
# Loop through the range in reverse order
for i in range(num_messages - 1, -1, -1):
# Get the index for the reversed order
reversed_index = num_messages - i - 1
# Display the messages in the reversed order
st.info(st.session_state["past"][reversed_index], icon="🤔")
st.success(st.session_state["generated"][reversed_index], icon="👩🎓")
# Append the messages to the download_str in the reversed order
download_str.append(st.session_state["past"][reversed_index])
download_str.append(st.session_state["generated"][reversed_index])
download_str = "\n".join(download_str)
with st.sidebar:
st.download_button("Download", download_str)
# Koristi se samo za deploy na streamlit.io
deployment_environment = os.environ.get("DEPLOYMENT_ENVIRONMENT")
if deployment_environment == "Streamlit":
name, authentication_status, username = positive_login(main, " ")
else:
if __name__ == "__main__":
main()