-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathlightning_qubit.py
707 lines (576 loc) · 28.2 KB
/
lightning_qubit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
# Copyright 2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
This module contains the :class:`~.LightningQubit` class, a PennyLane simulator device that
interfaces with C++ for fast linear algebra calculations.
"""
from typing import List
from warnings import warn
from os import getenv
from itertools import islice
import numpy as np
from pennylane import (
math,
gradients,
BasisState,
QubitStateVector,
QubitUnitary,
Projector,
Hermitian,
Rot,
QuantumFunctionError,
DeviceError,
)
from pennylane.devices import DefaultQubit
from pennylane.operation import Tensor, Operation
from pennylane.measurements import MeasurementProcess, Expectation, State
from pennylane.wires import Wires
# Remove after the next release of PL
# Add from pennylane import matrix
import pennylane as qml
from ._version import __version__
try:
from .lightning_qubit_ops import (
adjoint_diff,
MeasuresC64,
StateVectorC64,
MeasuresC128,
StateVectorC128,
Kokkos_info,
allocate_aligned_array,
get_alignment,
best_alignment,
)
from ._serialize import _serialize_observables, _serialize_ops
CPP_BINARY_AVAILABLE = True
except ModuleNotFoundError:
CPP_BINARY_AVAILABLE = False
def _chunk_iterable(it, num_chunks):
"Lazy-evaluated chunking of given iterable from https://stackoverflow.com/a/22045226"
it = iter(it)
return iter(lambda: tuple(islice(it, num_chunks)), ())
def _remove_snapshot_from_operations(operations):
operations = operations.copy()
operations.discard("Snapshot")
return operations
class LightningQubit(DefaultQubit):
"""PennyLane Lightning device.
An extension of PennyLane's built-in ``default.qubit`` device that interfaces with C++ to
perform fast linear algebra calculations.
Use of this device requires pre-built binaries or compilation from source. Check out the
:doc:`/installation` guide for more details.
Args:
wires (int): the number of wires to initialize the device with
c_dtype: Datatypes for statevector representation. Must be one of ``np.complex64`` or ``np.complex128``.
shots (int): How many times the circuit should be evaluated (or sampled) to estimate
the expectation values. Defaults to ``None`` if not specified. Setting
to ``None`` results in computing statistics like expectation values and
variances analytically.
batch_obs (bool): Determine whether we process observables parallelly when computing the
jacobian. This value is only relevant when the lightning qubit is built with OpenMP.
"""
name = "Lightning Qubit PennyLane plugin"
short_name = "lightning.qubit"
pennylane_requires = ">=0.15"
version = __version__
author = "Xanadu Inc."
_CPP_BINARY_AVAILABLE = True
operations = _remove_snapshot_from_operations(DefaultQubit.operations)
def __init__(self, wires, *, c_dtype=np.complex128, shots=None, batch_obs=False):
if c_dtype is np.complex64:
r_dtype = np.float32
self.use_csingle = True
elif c_dtype is np.complex128:
r_dtype = np.float64
self.use_csingle = False
else:
raise TypeError(f"Unsupported complex Type: {c_dtype}")
super().__init__(wires, r_dtype=r_dtype, c_dtype=c_dtype, shots=shots)
self._batch_obs = batch_obs
@staticmethod
def _asarray(arr, dtype=None):
arr = np.asarray(arr) # arr is not copied
if not dtype:
dtype = arr.dtype
# We allocate a new aligned memory and copy data to there if alignment or dtype mismatches
# Note that get_alignment does not neccsarily returns CPUMemoryModel(Unaligned) even for
# numpy allocated memory as the memory location happens to be aligend.
if int(get_alignment(arr)) < int(best_alignment()) or arr.dtype != dtype:
new_arr = allocate_aligned_array(arr.size, np.dtype(dtype)).reshape(arr.shape)
np.copyto(new_arr, arr)
arr = new_arr
return arr
@classmethod
def capabilities(cls):
capabilities = super().capabilities().copy()
capabilities.update(
model="qubit",
supports_reversible_diff=False,
supports_inverse_operations=True,
supports_analytic_computation=True,
returns_state=True,
)
capabilities.pop("passthru_devices", None)
return capabilities
def apply(self, operations, rotations=None, **kwargs):
# State preparation is currently done in Python
if operations: # make sure operations[0] exists
if isinstance(operations[0], QubitStateVector):
self._apply_state_vector(operations[0].parameters[0].copy(), operations[0].wires)
del operations[0]
elif isinstance(operations[0], BasisState):
self._apply_basis_state(operations[0].parameters[0], operations[0].wires)
del operations[0]
for operation in operations:
if isinstance(operation, (QubitStateVector, BasisState)):
raise DeviceError(
"Operation {} cannot be used after other Operations have already been "
"applied on a {} device.".format(operation.name, self.short_name)
)
if operations:
self._pre_rotated_state = self.apply_lightning(self._state, operations)
else:
self._pre_rotated_state = self._state
if rotations:
if any(isinstance(r, QubitUnitary) for r in rotations):
super().apply(operations=[], rotations=rotations)
else:
self._state = self.apply_lightning(np.copy(self._pre_rotated_state), rotations)
else:
self._state = self._pre_rotated_state
def apply_lightning(self, state, operations):
"""Apply a list of operations to the state tensor.
Args:
state (array[complex]): the input state tensor
operations (list[~pennylane.operation.Operation]): operations to apply
dtype (type): Type of numpy ``complex`` to be used. Can be important
to specify for large systems for memory allocation purposes.
Returns:
array[complex]: the output state tensor
"""
state_vector = np.ravel(state)
if self.use_csingle:
# use_csingle
sim = StateVectorC64(state_vector)
else:
# self.C_DTYPE is np.complex128 by default
sim = StateVectorC128(state_vector)
# Skip over identity operations instead of performing
# matrix multiplication with the identity.
skipped_ops = ["Identity"]
for o in operations:
if o.base_name in skipped_ops:
continue
name = o.name.split(".")[0] # The split is because inverse gates have .inv appended
method = getattr(sim, name, None)
wires = self.wires.indices(o.wires)
if method is None:
# Inverse can be set to False since qml.matrix(o) is already in inverted form
method = getattr(sim, "applyMatrix")
try:
method(qml.matrix(o), wires, False)
except AttributeError: # pragma: no cover
# To support older versions of PL
method(o.matrix, wires, False)
else:
inv = o.inverse
param = o.parameters
method(wires, inv, param)
return np.reshape(state_vector, state.shape)
@staticmethod
def _check_adjdiff_supported_measurements(measurements: List[MeasurementProcess]):
"""Check whether given list of measurement is supported by adjoint_diff.
Args:
measurements (List[MeasurementProcess]): a list of measurement processes to check.
Returns:
Expectation or State: a common return type of measurements.
"""
if len(measurements) == 0:
return None
if len(measurements) == 1 and measurements[0].return_type is State:
return State
# Now the return_type of measurement processes must be expectation
if not all([m.return_type is Expectation for m in measurements]):
raise QuantumFunctionError(
"Adjoint differentiation method does not support expectation return type "
"mixed with other return types"
)
for m in measurements:
if not isinstance(m.obs, Tensor):
if isinstance(m.obs, Projector):
raise QuantumFunctionError(
"Adjoint differentiation method does not support the Projector observable"
)
else:
if any([isinstance(o, Projector) for o in m.obs.non_identity_obs]):
raise QuantumFunctionError(
"Adjoint differentiation method does not support the Projector observable"
)
return Expectation
@staticmethod
def _check_adjdiff_supported_operations(operations):
"""Check Lightning adjoint differentiation method support for a tape.
Raise ``QuantumFunctionError`` if ``tape`` contains not supported measurements,
observables, or operations by the Lightning adjoint differentiation method.
Args:
tape (.QuantumTape): quantum tape to differentiate.
"""
for op in operations:
if op.num_params > 1 and not isinstance(op, Rot):
raise QuantumFunctionError(
f"The {op.name} operation is not supported using "
'the "adjoint" differentiation method'
)
def _process_jacobian_tape(self, tape, starting_state, use_device_state):
# To support np.complex64 based on the type of self._state
if self.use_csingle:
create_ops_list = adjoint_diff.create_ops_list_C64
else:
create_ops_list = adjoint_diff.create_ops_list_C128
# Initialization of state
if starting_state is not None:
if starting_state.size != 2 ** len(self.wires):
raise QuantumFunctionError(
"The number of qubits of starting_state must be the same as "
"that of the device."
)
ket = self._asarray(starting_state, dtype=self.C_DTYPE)
else:
if not use_device_state:
self.reset()
self.apply(tape.operations)
ket = self._pre_rotated_state
obs_serialized = _serialize_observables(tape, self.wire_map, use_csingle=self.use_csingle)
ops_serialized, use_sp = _serialize_ops(tape, self.wire_map)
ops_serialized = create_ops_list(*ops_serialized)
# We need to filter out indices in trainable_params which do not
# correspond to operators.
trainable_params = sorted(tape.trainable_params)
if len(trainable_params) == 0:
return None
tp_shift = []
record_tp_rows = []
all_params = 0
for op_idx, tp in enumerate(trainable_params):
op, _ = tape.get_operation(
op_idx
) # get op_idx-th operator among differentiable operators
if isinstance(op, Operation) and not isinstance(op, (BasisState, QubitStateVector)):
# We now just ignore non-op or state preps
tp_shift.append(tp)
record_tp_rows.append(all_params)
all_params += 1
if use_sp:
# When the first element of the tape is state preparation. Still, I am not sure
# whether there must be only one state preparation...
tp_shift = [i - 1 for i in tp_shift]
ket = ket.reshape(-1)
state_vector = StateVectorC64(ket) if self.use_csingle else StateVectorC128(ket)
return {
"state_vector": state_vector,
"obs_serialized": obs_serialized,
"ops_serialized": ops_serialized,
"tp_shift": tp_shift,
"record_tp_rows": record_tp_rows,
"all_params": all_params,
}
def adjoint_jacobian(self, tape, starting_state=None, use_device_state=False):
if self.shots is not None:
warn(
"Requested adjoint differentiation to be computed with finite shots."
" The derivative is always exact when using the adjoint differentiation method.",
UserWarning,
)
tape_return_type = self._check_adjdiff_supported_measurements(tape.measurements)
if not tape_return_type: # the tape does not have measurements
return np.array([], dtype=self._state.dtype)
if tape_return_type is State:
raise QuantumFunctionError(
"This method does not support statevector return type. "
"Use vjp method instead for this purpose."
)
self._check_adjdiff_supported_operations(tape.operations)
processed_data = self._process_jacobian_tape(tape, starting_state, use_device_state)
if not processed_data: # training_params is empty
return np.array([], dtype=self._state.dtype)
trainable_params = processed_data["tp_shift"]
# If requested batching over observables, chunk into OMP_NUM_THREADS sized chunks.
# This will allow use of Lightning with adjoint for large-qubit numbers AND large
# numbers of observables, enabling choice between compute time and memory use.
requested_threads = int(getenv("OMP_NUM_THREADS", "1"))
if self._batch_obs and requested_threads > 1:
obs_partitions = _chunk_iterable(processed_data["obs_serialized"], requested_threads)
jac = []
for obs_chunk in obs_partitions:
jac_local = adjoint_diff.adjoint_jacobian(
processed_data["state_vector"],
obs_chunk,
processed_data["ops_serialized"],
trainable_params,
)
jac.extend(jac_local)
else:
jac = adjoint_diff.adjoint_jacobian(
processed_data["state_vector"],
processed_data["obs_serialized"],
processed_data["ops_serialized"],
trainable_params,
)
jac = np.array(jac)
jac = jac.reshape(-1, len(trainable_params))
jac_r = np.zeros((jac.shape[0], processed_data["all_params"]))
jac_r[:, processed_data["record_tp_rows"]] = jac
return jac_r
def vjp(self, measurements, dy, starting_state=None, use_device_state=False):
"""Generate the processing function required to compute the vector-Jacobian products of a tape.
This function can be used with multiple expectation values or a quantum state. When a quantum state
is given,
.. code-block:: python
vjp_f = dev.vjp([qml.state()], dy)
vjp = vjp_f(tape)
computes :math:`w = (w_1,\cdots,w_m)` where
.. math::
w_k = \\langle v| \\frac{\partial}{\partial \\theta_k} | \psi_{\pmb{\\theta}} \\rangle.
Here, :math:`m` is the total number of trainable parameters, :math:`\pmb{\\theta}` is the vector of trainable parameters and :math:`\psi_{\pmb{\\theta}}`
is the output quantum state.
Args:
measurements (list): List of measurement processes for vector-Jacobian product. Now it must be expectation values or a quantum state.
dy (tensor_like): Gradient-output vector. Must have shape matching the output shape of the corresponding tape, i.e. number of measrurements if the return type is expectation or :math:`2^N` if the return type is statevector
starting_state (tensor_like): post-forward pass state to start execution with. It should be
complex-valued. Takes precedence over ``use_device_state``.
use_device_state (bool): use current device state to initialize. A forward pass of the same
circuit should be the last thing the device has executed. If a ``starting_state`` is
provided, that takes precedence.
Returns:
The processing function required to compute the vector-Jacobian products of a tape.
"""
if self.shots is not None:
warn(
"Requested adjoint differentiation to be computed with finite shots."
" The derivative is always exact when using the adjoint differentiation method.",
UserWarning,
)
tape_return_type = self._check_adjdiff_supported_measurements(measurements)
if math.allclose(dy, 0) or tape_return_type is None:
return lambda tape: math.convert_like(np.zeros(len(tape.trainable_params)), dy)
if tape_return_type is Expectation:
if len(dy) != len(measurements):
raise ValueError(
"Number of observables in the tape must be the same as the length of dy in the vjp method"
)
if np.iscomplexobj(dy):
raise ValueError(
"The vjp method only works with a real-valued dy when the tape is returning an expectation value"
)
ham = qml.Hamiltonian(dy, [m.obs for m in measurements])
def processing_fn(tape):
nonlocal ham
num_params = len(tape.trainable_params)
if num_params == 0:
return np.array([], dtype=self._state.dtype)
new_tape = tape.copy()
new_tape._measurements = [qml.expval(ham)]
return self.adjoint_jacobian(new_tape, starting_state, use_device_state).reshape(-1)
return processing_fn
if tape_return_type is State:
if len(dy) != 2 ** len(self.wires):
raise ValueError(
"Size of the provided vector dy must be the same as the size of the statevector"
)
if np.isrealobj(dy):
warn(
"The vjp method only works with complex-valued dy when the tape is returning a statevector. Upcasting dy."
)
dy = dy.astype(self.C_DTYPE)
def processing_fn(tape):
nonlocal dy
processed_data = self._process_jacobian_tape(tape, starting_state, use_device_state)
return adjoint_diff.statevector_vjp(
processed_data["state_vector"],
processed_data["ops_serialized"],
dy,
processed_data["tp_shift"],
)
return processing_fn
def batch_vjp(
self, tapes, dys, reduction="append", starting_state=None, use_device_state=False
):
"""Generate the processing function required to compute the vector-Jacobian products
of a batch of tapes.
Args:
tapes (Sequence[.QuantumTape]): sequence of quantum tapes to differentiate
dys (Sequence[tensor_like]): Sequence of gradient-output vectors ``dy``. Must be the
same length as ``tapes``. Each ``dy`` tensor should have shape
matching the output shape of the corresponding tape.
reduction (str): Determines how the vector-Jacobian products are returned.
If ``append``, then the output of the function will be of the form
``List[tensor_like]``, with each element corresponding to the VJP of each
input tape. If ``extend``, then the output VJPs will be concatenated.
starting_state (tensor_like): post-forward pass state to start execution with. It should be
complex-valued. Takes precedence over ``use_device_state``.
use_device_state (bool): use current device state to initialize. A forward pass of the same
circuit should be the last thing the device has executed. If a ``starting_state`` is
provided, that takes precedence.
Returns:
The processing function required to compute the vector-Jacobian products of a batch of tapes.
"""
fns = []
# Loop through the tapes and dys vector
for tape, dy in zip(tapes, dys):
fn = self.vjp(
tape.measurements,
dy,
starting_state=starting_state,
use_device_state=use_device_state,
)
fns.append(fn)
def processing_fns(tapes):
vjps = []
for t, f in zip(tapes, fns):
vjp = f(t)
if isinstance(reduction, str):
getattr(vjps, reduction)(vjp)
elif callable(reduction):
reduction(vjps, vjp)
return vjps
return processing_fns
def probability(self, wires=None, shot_range=None, bin_size=None):
"""Return the probability of each computational basis state.
Devices that require a finite number of shots always return the
estimated probability.
Args:
wires (Iterable[Number, str], Number, str, Wires): wires to return
marginal probabilities for. Wires not provided are traced out of the system.
shot_range (tuple[int]): 2-tuple of integers specifying the range of samples
to use. If not specified, all samples are used.
bin_size (int): Divides the shot range into bins of size ``bin_size``, and
returns the measurement statistic separately over each bin. If not
provided, the entire shot range is treated as a single bin.
Returns:
array[float]: list of the probabilities
"""
if self.shots is not None:
return self.estimate_probability(wires=wires, shot_range=shot_range, bin_size=bin_size)
wires = wires or self.wires
wires = Wires(wires)
# translate to wire labels used by device
device_wires = self.map_wires(wires)
# To support np.complex64 based on the type of self._state
dtype = self._state.dtype
ket = np.ravel(self._state)
state_vector = StateVectorC64(ket) if self.use_csingle else StateVectorC128(ket)
M = MeasuresC64(state_vector) if self.use_csingle else MeasuresC128(state_vector)
return M.probs(device_wires)
def generate_samples(self):
"""Generate samples
Returns:
array[int]: array of samples in binary representation with shape ``(dev.shots, dev.num_wires)``
"""
# Initialization of state
ket = np.ravel(self._state)
state_vector = StateVectorC64(ket) if self.use_csingle else StateVectorC128(ket)
M = MeasuresC64(state_vector) if self.use_csingle else MeasuresC128(state_vector)
return M.generate_samples(len(self.wires), self.shots).astype(int, copy=False)
def expval(self, observable, shot_range=None, bin_size=None):
"""Expectation value of the supplied observable.
Args:
observable: A PennyLane observable.
shot_range (tuple[int]): 2-tuple of integers specifying the range of samples
to use. If not specified, all samples are used.
bin_size (int): Divides the shot range into bins of size ``bin_size``, and
returns the measurement statistic separately over each bin. If not
provided, the entire shot range is treated as a single bin.
Returns:
Expectation value of the observable
"""
if isinstance(observable.name, List) or observable.name in [
"Identity",
"Projector",
"Hermitian",
"Hamiltonian",
]:
return super().expval(observable, shot_range=shot_range, bin_size=bin_size)
if self.shots is not None:
# estimate the expectation value
# LightningQubit doesn't support sampling yet
samples = self.sample(observable, shot_range=shot_range, bin_size=bin_size)
return np.squeeze(np.mean(samples, axis=0))
# Initialization of state
ket = np.ravel(self._pre_rotated_state)
state_vector = StateVectorC64(ket) if self.use_csingle else StateVectorC128(ket)
M = MeasuresC64(state_vector) if self.use_csingle else MeasuresC128(state_vector)
if observable.name == "SparseHamiltonian":
if Kokkos_info()["USE_KOKKOS"] == True:
# converting COO to CSR sparse representation.
CSR_SparseHamiltonian = observable.data[0].tocsr(copy=False)
return M.expval(
CSR_SparseHamiltonian.indptr,
CSR_SparseHamiltonian.indices,
CSR_SparseHamiltonian.data,
)
return super().expval(observable, shot_range=shot_range, bin_size=bin_size)
# translate to wire labels used by device
observable_wires = self.map_wires(observable.wires)
return M.expval(observable.name, observable_wires)
def var(self, observable, shot_range=None, bin_size=None):
"""Variance of the supplied observable.
Args:
observable: A PennyLane observable.
shot_range (tuple[int]): 2-tuple of integers specifying the range of samples
to use. If not specified, all samples are used.
bin_size (int): Divides the shot range into bins of size ``bin_size``, and
returns the measurement statistic separately over each bin. If not
provided, the entire shot range is treated as a single bin.
Returns:
Variance of the observable
"""
if isinstance(observable.name, List) or observable.name in [
"Identity",
"Projector",
"Hermitian",
]:
return super().var(observable, shot_range=shot_range, bin_size=bin_size)
if self.shots is not None:
# estimate the var
# LightningQubit doesn't support sampling yet
samples = self.sample(observable, shot_range=shot_range, bin_size=bin_size)
return np.squeeze(np.var(samples, axis=0))
# Initialization of state
ket = np.ravel(self._pre_rotated_state)
state_vector = StateVectorC64(ket) if self.use_csingle else StateVectorC128(ket)
M = MeasuresC64(state_vector) if self.use_csingle else MeasuresC128(state_vector)
# translate to wire labels used by device
observable_wires = self.map_wires(observable.wires)
return M.var(observable.name, observable_wires)
if not CPP_BINARY_AVAILABLE:
class LightningQubit(DefaultQubit): # pragma: no cover
name = "Lightning Qubit PennyLane plugin"
short_name = "lightning.qubit"
pennylane_requires = ">=0.15"
version = __version__
author = "Xanadu Inc."
_CPP_BINARY_AVAILABLE = False
operations = _remove_snapshot_from_operations(DefaultQubit.operations)
def __init__(self, wires, *, c_dtype=np.complex128, **kwargs):
warn(
"Pre-compiled binaries for lightning.qubit are not available. Falling back to "
"using the Python-based default.qubit implementation. To manually compile from "
"source, follow the instructions at "
"https://pennylane-lightning.readthedocs.io/en/latest/installation.html.",
UserWarning,
)
if c_dtype is np.complex64:
r_dtype = np.float32
elif c_dtype is np.complex128:
r_dtype = np.float64
else:
raise TypeError(f"Unsupported complex Type: {c_dtype}")
super().__init__(wires, r_dtype=r_dtype, c_dtype=c_dtype, **kwargs)