-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy path_tensornet.py
476 lines (383 loc) · 19.3 KB
/
_tensornet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# Copyright 2024 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Class implementation for tensornet manipulation.
"""
# pylint: disable=import-error, no-name-in-module, ungrouped-imports
try:
from pennylane_lightning.lightning_tensor_ops import (
exactTensorNetC64,
exactTensorNetC128,
mpsTensorNetC64,
mpsTensorNetC128,
)
except ImportError:
pass
import numpy as np
import pennylane as qml
from pennylane import BasisState, DeviceError, MPSPrep, StatePrep
from pennylane.ops.op_math import Adjoint
from pennylane.tape import QuantumScript
from pennylane.wires import Wires
def svd_split(Mat, site_shape, max_bond_dim):
"""SVD decomposition of a matrix via numpy linalg. Note that this function is to be moved to the C++ layer."""
# TODO: Check if cutensornet allows us to remove all zero (or < tol) singular values and the respective rows and columns of U and Vd
U, S, Vd = np.linalg.svd(Mat, full_matrices=False)
U = U * S # Append singular values to U
bonds = len(S)
Vd = Vd.reshape([bonds] + site_shape + [-1])
U = U.reshape([-1] + site_shape + [bonds])
# keep only chi bonds
chi = min([bonds, max_bond_dim])
U, Vd = U[..., :chi], Vd[:chi]
return U, Vd
def decompose_dense(psi, n_wires, site_shape, max_bond_dim):
"""Decompose a dense state vector/gate matrix into MPS/MPO sites."""
Ms = [[] for _ in range(n_wires)]
site_len = np.prod(site_shape)
psi = np.reshape(psi, (site_len, -1)) # split psi [2, 2, 2, 2...] to psi [site_len, -1]
U, Vd = svd_split(
psi, site_shape, max_bond_dim
) # psi [site_len, -1] -> U [site_len, mu] Vd [mu, (2x2x2x..)]
Ms[0] = U.reshape(site_shape + [-1])
bondL = Vd.shape[0]
psi = Vd
for i in range(1, n_wires - 1):
psi = np.reshape(psi, (site_len * bondL, -1)) # reshape psi[site_len*bondL, -1]
U, Vd = svd_split(
psi, site_shape, max_bond_dim
) # psi [site_len*bondL, -1] -> U [site_len, mu] Vd [mu, (2x2x2x..)]
Ms[i] = U
psi = Vd
bondL = Vd.shape[0]
Ms[-1] = Vd.reshape([-1] + site_shape)
return Ms
def gate_matrix_decompose(gate_ops_matrix, wires, max_mpo_bond_dim, c_dtype):
"""Permute and decompose a gate matrix into MPO sites. This method return the MPO sites in the Fortran order of the ``cutensornet`` backend. Note that MSB in the Pennylane convention is the LSB in the ``cutensornet`` convention."""
sorted_indexed_wires = sorted(enumerate(wires), key=lambda x: x[1])
original_axes, sorted_wires = zip(*sorted_indexed_wires)
tensor_shape = [2] * len(wires) * 2
matrix = gate_ops_matrix.astype(c_dtype)
# Convert the gate matrix to the correct shape and complex dtype
gate_tensor = matrix.reshape(tensor_shape)
# Create the correct order of indices for the gate tensor to be decomposed
indices_order = []
for i in range(len(wires)):
indices_order.extend([original_axes[i], original_axes[i] + len(wires)])
# Reverse the indices order to match the target wire order of cutensornet backend
indices_order.reverse()
# Permutation of the gate tensor
gate_tensor = np.transpose(gate_tensor, axes=indices_order)
mpo_site_shape = [2] * 2
# The indices order of MPOs: 1. left-most site: [ket, bra, bondR]; 2. right-most sites: [bondL, ket, bra]; 3. sites in-between: [bondL, ket, bra, bondR].
MPOs = decompose_dense(gate_tensor, len(wires), mpo_site_shape, max_mpo_bond_dim)
# Convert the MPOs to the correct order for the cutensornet backend
mpos = []
for index, MPO in enumerate(MPOs):
if index == 0:
# [ket, bra, bond](0, 1, 2) -> [ket, bond, bra](0, 2, 1) -> Fortran order or reverse indices(1, 2, 0) to match the order requirement of cutensornet backend.
mpos.append(np.transpose(MPO, axes=(1, 2, 0)))
elif index == len(MPOs) - 1:
# [bond, ket, bra](0, 1, 2) -> Fortran order or reverse indices(2, 1, 0) to match the order requirement of cutensornet backend.
mpos.append(np.transpose(MPO, axes=(2, 1, 0)))
else:
# [bondL, ket, bra, bondR](0, 1, 2, 3) -> [bondL, ket, bondR, bra](0, 1, 3, 2) -> Fortran order or reverse indices(2, 3, 1, 0) to match the requirement of cutensornet backend.
mpos.append(np.transpose(MPO, axes=(2, 3, 1, 0)))
return mpos, sorted_wires
# pylint: disable=too-many-instance-attributes
class LightningTensorNet:
"""Lightning tensornet class.
Interfaces with C++ python binding methods for tensornet manipulation.
Args:
num_wires(int): the number of wires to initialize the device with
c_dtype: Datatypes for tensor network representation. Must be one of
``np.complex64`` or ``np.complex128``. Default is ``np.complex128``
method(string): tensor network method. Supported methods are "mps" (Matrix Product State) and
"tn" (Exact Tensor Network). Options: ["mps", "tn"].
device_name(string): tensor network device name. Options: ["lightning.tensor"]
Keyword Args:
max_bond_dim (int): The maximum bond dimension to be used in the MPS simulation. Default is 128.
The accuracy of the wavefunction representation comes with a memory tradeoff which can be
tuned with `max_bond_dim`. The larger the internal bond dimension, the more entanglement can
be described but the larger the memory requirements. Note that GPUs are ill-suited (i.e. less
competitive compared with CPUs) for simulating circuits with low bond dimensions and/or circuit
layers with a single or few gates because the arithmetic intensity is lower.
cutoff (float): The threshold used to truncate the singular values of the MPS tensors. The default is 0.
cutoff_mode (str): Singular value truncation mode for MPS tensors. The options are ``"rel"`` and ``"abs"``. The default is ``"abs"``.
"""
# pylint: disable=too-many-arguments, too-many-positional-arguments
def __init__(
self,
num_wires=None,
method: str = "mps",
c_dtype=np.complex128,
device_name="lightning.tensor",
**kwargs,
):
if device_name != "lightning.tensor":
raise DeviceError(f'The device name "{device_name}" is not a valid option.')
if num_wires < 2:
raise ValueError("Number of wires must be greater than 1.")
self._num_wires = num_wires
self._method = method
self._c_dtype = c_dtype
self._device_name = device_name
self._wires = Wires(range(num_wires))
if self._method == "mps":
self._max_bond_dim = kwargs.get("max_bond_dim", 128)
self._cutoff = kwargs.get("cutoff", 0)
self._cutoff_mode = kwargs.get("cutoff_mode", "abs")
self._tensornet = self._tensornet_dtype()(self._num_wires, self._max_bond_dim)
elif self._method == "tn":
self._tensornet = self._tensornet_dtype()(self._num_wires)
else:
raise DeviceError(f"The method {self._method} is not supported.")
@property
def dtype(self):
"""Returns the tensor network data type."""
return self._c_dtype
@property
def device_name(self):
"""Returns the tensor network device name."""
return self._device_name
@property
def num_wires(self):
"""Number of wires addressed on this device"""
return self._num_wires
@property
def method(self):
"""Returns the method (mps or tn) for evaluating the tensor network."""
return self._method
@property
def tensornet(self):
"""Returns a handle to the tensor network."""
return self._tensornet
@property
def state(self):
"""Copy the state vector data to a numpy array."""
state = np.zeros(2**self._num_wires, dtype=self.dtype)
self._tensornet.getState(state)
return state
def _tensornet_dtype(self):
"""Binding to Lightning Managed tensor network C++ class.
Returns: the tensor network class
"""
if self.method == "tn": # Using "tn" method
return exactTensorNetC128 if self.dtype == np.complex128 else exactTensorNetC64
# Using "mps" method
return mpsTensorNetC128 if self.dtype == np.complex128 else mpsTensorNetC64
def reset_state(self):
"""Reset the device's initial quantum state"""
# init the quantum state to |00..0>
self._tensornet.reset()
def _preprocess_state_vector(self, state, device_wires):
"""Convert a specified state to a full internal state vector.
Args:
state (array[complex]): normalized input state of length ``2**len(device_wires)``
device_wires (Wires): wires that get initialized in the state
Returns:
array[complex]: normalized input state of length ``2**len(device_wires)``
"""
output_shape = [2] * self._num_wires
# special case for integral types
if state.dtype.kind == "i":
state = np.array(state, dtype=self.dtype)
if len(device_wires) == self._num_wires and Wires(sorted(device_wires)) == device_wires:
return np.reshape(state, output_shape).ravel(order="C")
local_dev_wires = device_wires.tolist().copy()
local_dev_wires = local_dev_wires[::-1]
# generate basis states on subset of qubits via broadcasting as substitute of cartesian product.
# Allocate a single row as a base to avoid a large array allocation with
# the cartesian product algorithm.
# Initialize the base with the pattern [0 1 0 1 ...].
base = np.tile([0, 1], 2 ** (len(local_dev_wires) - 1)).astype(dtype=np.int64)
# Allocate the array where it will accumulate the value of the indexes depending on
# the value of the basis.
indexes = np.zeros(2 ** (len(local_dev_wires)), dtype=np.int64)
max_dev_wire = self._num_wires - 1
# Iterate over all device wires.
for i, wire in enumerate(local_dev_wires):
# Accumulate indexes from the basis.
indexes += base * 2 ** (max_dev_wire - wire)
if i == len(local_dev_wires) - 1:
continue
two_n = 2 ** (i + 1) # Compute the value of the base.
# Update the value of the base without reallocating a new array.
# Reshape the basis to swap the internal columns.
base = base.reshape(-1, two_n * 2)
swapper_A = two_n // 2
swapper_B = swapper_A + two_n
base[:, swapper_A:swapper_B] = base[:, swapper_A:swapper_B][:, ::-1]
# Flatten the base array
base = base.reshape(-1)
# get full state vector to be factorized into MPS
full_state = np.zeros(2**self._num_wires, dtype=self.dtype)
for i, value in enumerate(state):
full_state[indexes[i]] = value
return np.reshape(full_state, output_shape).ravel(order="C")
def _apply_state_vector(self, state, device_wires: Wires):
"""Convert a specified state to MPS sites.
Args:
state (array[complex]): normalized input state of length ``2**len(device_wires)``
or broadcasted state of shape ``(batch_size, 2**len(device_wires))``
device_wires (Wires): wires that get initialized in the state
"""
if self.method == "tn":
raise DeviceError("Exact Tensor Network does not support StatePrep")
if self.method == "mps":
state = self._preprocess_state_vector(state, device_wires)
mps_site_shape = [2]
M = decompose_dense(state, self._num_wires, mps_site_shape, self._max_bond_dim)
self._tensornet.updateMPSSitesData(M)
def _apply_basis_state(self, state, wires):
"""Initialize the quantum state in a specified computational basis state.
Args:
state (array[int]): computational basis state of shape ``(wires,)``
consisting of 0s and 1s.
wires (Wires): wires that the provided computational state should be
initialized on
Note: This function does not support broadcasted inputs yet.
"""
# length of basis state parameter
n_basis_state = len(state)
if not set(state.tolist()).issubset({0, 1}):
raise ValueError("BasisState parameter must consist of 0 or 1 integers.")
if n_basis_state != len(wires):
raise ValueError("BasisState parameter and wires must be of equal length.")
self._tensornet.setBasisState(state)
def _apply_MPO(self, gate_matrix, wires):
"""Apply a matrix product operator to the quantum state (MPS method only).
Args:
gate_matrix (array[complex/float]): matrix representation of the MPO
wires (Wires): wires that the MPO should be applied to
Returns:
None
"""
# TODO: Discuss if public interface for max_mpo_bond_dim argument
max_mpo_bond_dim = self._max_bond_dim
# Get sorted wires and MPO site tensor
mpos, sorted_wires = gate_matrix_decompose(
gate_matrix, wires, max_mpo_bond_dim, self._c_dtype
)
self._tensornet.applyMPOOperation(mpos, sorted_wires, max_mpo_bond_dim)
# pylint: disable=too-many-branches
def _apply_lightning_controlled(self, operation):
"""Apply an arbitrary controlled operation to the state tensor. Note that `cutensornet` only supports controlled gates with a single wire target.
Args:
operation (~pennylane.operation.Operation): controlled operation to apply
Returns:
None
"""
tensornet = self._tensornet
basename = operation.base.name
method = getattr(tensornet, f"{basename}", None)
control_wires = list(operation.control_wires)
control_values = operation.control_values
target_wires = list(operation.target_wires)
if method is not None and basename not in ("GlobalPhase", "MultiRZ"):
inv = False
param = operation.parameters
method(control_wires, control_values, target_wires, inv, param)
else: # apply gate as an n-controlled matrix
method = getattr(tensornet, "applyControlledMatrix")
method(qml.matrix(operation.base), control_wires, control_values, target_wires, False)
# pylint: disable=too-many-statements
def _apply_lightning(self, operations):
"""Apply a list of operations to the quantum state.
Args:
operations (list[~pennylane.operation.Operation]): operations to apply
Returns:
None
"""
tensornet = self._tensornet
# Skip over identity operations instead of performing
# matrix multiplication with it.
for operation in operations:
if isinstance(operation, qml.Identity):
continue
if isinstance(operation, Adjoint):
name = operation.base.name
invert_param = True
else:
name = operation.name
invert_param = False
method = getattr(tensornet, name, None)
wires = list(operation.wires)
if isinstance(operation, qml.ops.Controlled) and len(list(operation.target_wires)) == 1:
self._apply_lightning_controlled(operation)
elif isinstance(operation, qml.GlobalPhase):
matrix = np.eye(2) * operation.matrix().flatten()[0]
method = getattr(tensornet, "applyMatrix")
# GlobalPhase is always applied to the first wire in the tensor network
method(matrix, [0], False)
elif len(wires) <= 2:
if method is not None:
param = operation.parameters
method(wires, invert_param, param)
else:
# Inverse can be set to False since qml.matrix(operation) is already in
# inverted form
method = getattr(tensornet, "applyMatrix")
try:
method(qml.matrix(operation), wires, False)
except AttributeError: # pragma: no cover
# To support older versions of PL
method(operation.matrix(), wires, False)
else:
try:
gate_ops_matrix = qml.matrix(operation)
except AttributeError: # pragma: no cover
# To support older versions of PL
gate_ops_matrix = operation.matrix()
if self.method == "mps":
self._apply_MPO(gate_ops_matrix, wires)
if self.method == "tn":
method = getattr(tensornet, "applyMatrix")
method(gate_ops_matrix, wires, False)
def apply_operations(self, operations):
"""Append operations to the tensor network graph."""
# State preparation is currently done in Python
if operations: # make sure operations[0] exists
if isinstance(operations[0], StatePrep):
if self.method == "mps":
self._apply_state_vector(
operations[0].parameters[0].copy(), operations[0].wires
)
operations = operations[1:]
if self.method == "tn":
raise DeviceError("Exact Tensor Network does not support StatePrep")
elif isinstance(operations[0], BasisState):
self._apply_basis_state(operations[0].parameters[0], operations[0].wires)
operations = operations[1:]
elif isinstance(operations[0], MPSPrep):
if self.method == "mps":
mps = operations[0].mps
self._tensornet.updateMPSSitesData(mps)
operations = operations[1:]
if self.method == "tn":
raise DeviceError("Exact Tensor Network does not support MPSPrep")
self._apply_lightning(operations)
def set_tensor_network(self, circuit: QuantumScript):
"""
Set the tensor network that results from executing the given quantum script.
This is an internal function that will be called by the successor to ``lightning.tensor``.
Args:
circuit (QuantumScript): The single circuit to simulate
"""
self.apply_operations(circuit.operations)
self.appendFinalState()
return self
def appendFinalState(self):
"""
Append the final state to the tensor network. This function should be called once when apply_operations is called. It only applies to the MPS method and is an empty call for the Exact Tensor Network method.
"""
if self.method == "mps":
self._tensornet.appendMPSFinalState(self._cutoff, self._cutoff_mode)