-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathmodel.py
220 lines (175 loc) · 8.75 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Copyright (c) 2018-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import torch.nn as nn
import torch
class TemporalModelBase(nn.Module):
"""
Do not instantiate this class.
"""
def __init__(self, num_joints_in, in_features, num_joints_out,
filter_widths, causal, dropout, channels):
super().__init__()
# Validate input
for fw in filter_widths:
assert fw % 2 != 0, 'Only odd filter widths are supported'
self.num_joints_in = num_joints_in
self.in_features = in_features
self.num_joints_out = num_joints_out
self.filter_widths = filter_widths
self.drop = nn.Dropout(dropout)
self.relu = nn.ReLU(inplace=True)
self.pad = [filter_widths[0] // 2]
self.expand_bn = nn.BatchNorm1d(channels, momentum=0.1)
self.shrink = nn.Conv1d(channels, num_joints_out * 3, 1)
def set_bn_momentum(self, momentum):
self.expand_bn.momentum = momentum
for bn in self.layers_bn:
bn.momentum = momentum
def receptive_field(self):
"""
Return the total receptive field of this model as # of frames.
"""
frames = 0
for f in self.pad:
frames += f
return 1 + 2 * frames
def total_causal_shift(self):
"""
Return the asymmetric offset for sequence padding.
The returned value is typically 0 if causal convolutions are disabled,
otherwise it is half the receptive field.
"""
frames = self.causal_shift[0]
next_dilation = self.filter_widths[0]
for i in range(1, len(self.filter_widths)):
frames += self.causal_shift[i] * next_dilation
next_dilation *= self.filter_widths[i]
return frames
def forward(self, x):
assert len(x.shape) == 4
assert x.shape[-2] == self.num_joints_in
assert x.shape[-1] == self.in_features
sz = x.shape[:3]
x = x.view(x.shape[0], x.shape[1], -1)
x = x.permute(0, 2, 1)
x = self._forward_blocks(x)
x = x.permute(0, 2, 1)
x = x.view(sz[0], -1, self.num_joints_out, 3)
return x
class TemporalModel(TemporalModelBase):
"""
Reference 3D pose estimation model with temporal convolutions.
This implementation can be used for all use-cases.
"""
def __init__(self, num_joints_in, in_features, num_joints_out,
filter_widths, causal=False, dropout=0.25, channels=1024, dense=False):
"""
Initialize this model.
Arguments:
num_joints_in -- number of input joints (e.g. 17 for Human3.6M)
in_features -- number of input features for each joint (typically 2 for 2D input)
num_joints_out -- number of output joints (can be different than input)
filter_widths -- list of convolution widths, which also determines the # of blocks and receptive field
causal -- use causal convolutions instead of symmetric convolutions (for real-time applications)
dropout -- dropout probability
channels -- number of convolution channels
dense -- use regular dense convolutions instead of dilated convolutions (ablation experiment)
"""
super().__init__(num_joints_in, in_features, num_joints_out, filter_widths, causal, dropout, channels)
self.expand_conv = nn.Conv1d(num_joints_in * in_features, channels, filter_widths[0], bias=False)
layers_conv = []
layers_bn = []
self.causal_shift = [(filter_widths[0]) // 2 if causal else 0]
next_dilation = filter_widths[0]
for i in range(1, len(filter_widths)):
self.pad.append((filter_widths[i] - 1) * next_dilation // 2)
self.causal_shift.append((filter_widths[i] // 2 * next_dilation) if causal else 0)
# 替换为无dilation的conv1d算子
# layers_conv.append(nn.Conv1d(channels, channels,
# filter_widths[i] if not dense else (2 * self.pad[-1] + 1),
# dilation=next_dilation if not dense else 1,
# bias=False))
layers_conv.append(nn.Conv1d(channels, channels,
filter_widths[i] if not dense else (2 * self.pad[-1] + 1),
stride=3,
dilation=1,
bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
layers_conv.append(nn.Conv1d(channels, channels, 1, dilation=1, bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
next_dilation *= filter_widths[i]
self.layers_conv = nn.ModuleList(layers_conv)
self.layers_bn = nn.ModuleList(layers_bn)
def _forward_blocks(self, x):
x = self.drop(self.relu(self.expand_bn(self.expand_conv(x))))
for i in range(len(self.pad) - 1):
pad = self.pad[i + 1]
shift = self.causal_shift[i + 1]
res = x[:, :, pad + shift: x.shape[2] - pad + shift]
# 重组x,使得原本需要dilation的变为普通的conv1d
dilation = 3 ** (i + 1)
rebuild_x = []
seq_length = len(x[0][0])
for cur in range(seq_length):
bot = cur
up = bot+2*dilation+1
if up > seq_length:
break
now = x[:, :, bot:up:dilation]
rebuild_x.append(now)
x = torch.cat(rebuild_x, dim=2)
x = self.drop(self.relu(self.layers_bn[2 * i](self.layers_conv[2 * i](x))))
x = res + self.drop(self.relu(self.layers_bn[2 * i + 1](self.layers_conv[2 * i + 1](x))))
x = self.shrink(x)
return x
class TemporalModelOptimized1f(TemporalModelBase):
"""
3D pose estimation model optimized for single-frame batching, i.e.
where batches have input length = receptive field, and output length = 1.
This scenario is only used for training when stride == 1.
This implementation replaces dilated convolutions with strided convolutions
to avoid generating unused intermediate results. The weights are interchangeable
with the reference implementation.
"""
def __init__(self, num_joints_in, in_features, num_joints_out,
filter_widths, causal=False, dropout=0.25, channels=1024):
"""
Initialize this model.
Arguments:
num_joints_in -- number of input joints (e.g. 17 for Human3.6M)
in_features -- number of input features for each joint (typically 2 for 2D input)
num_joints_out -- number of output joints (can be different than input)
filter_widths -- list of convolution widths, which also determines the # of blocks and receptive field
causal -- use causal convolutions instead of symmetric convolutions (for real-time applications)
dropout -- dropout probability
channels -- number of convolution channels
"""
super().__init__(num_joints_in, in_features, num_joints_out, filter_widths, causal, dropout, channels)
self.expand_conv = nn.Conv1d(num_joints_in * in_features, channels, filter_widths[0], stride=filter_widths[0],
bias=False)
layers_conv = []
layers_bn = []
self.causal_shift = [(filter_widths[0] // 2) if causal else 0]
next_dilation = filter_widths[0]
for i in range(1, len(filter_widths)):
self.pad.append((filter_widths[i] - 1) * next_dilation // 2)
self.causal_shift.append((filter_widths[i] // 2) if causal else 0)
layers_conv.append(nn.Conv1d(channels, channels, filter_widths[i], stride=filter_widths[i], bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
layers_conv.append(nn.Conv1d(channels, channels, 1, dilation=1, bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
next_dilation *= filter_widths[i]
self.layers_conv = nn.ModuleList(layers_conv)
self.layers_bn = nn.ModuleList(layers_bn)
def _forward_blocks(self, x):
x = self.drop(self.relu(self.expand_bn(self.expand_conv(x))))
for i in range(len(self.pad) - 1):
res = x[:, :, self.causal_shift[i + 1] + self.filter_widths[i + 1] // 2:: self.filter_widths[i + 1]]
x = self.drop(self.relu(self.layers_bn[2 * i](self.layers_conv[2 * i](x[::3**i]))))
x = res + self.drop(self.relu(self.layers_bn[2 * i + 1](self.layers_conv[2 * i + 1](x))))
x = self.shrink(x)
return x