-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathdemo_test.py
43 lines (31 loc) · 909 Bytes
/
demo_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# -*- coding: utf-8 -*-
"""
# --------------------------------------------------------
# @Author : panjq
# @E-mail : [email protected]
# @Date : 2020-02-05 11:01:49
# --------------------------------------------------------
"""
import os
import PIL.Image as Image
import numpy as np
import cv2
import random
from utils import image_processing, file_processing, numpy_tools
import glob
import logging
import logging.handlers
import os
class LabelSmoothing(object):
def __init__(self, eps=0.1, p=0.5):
self.p = p
self.eps = eps
def __call__(self, img_dict):
if np.random.rand() < self.p:
img_dict['label'] = np.abs(img_dict['label'] - self.eps)
return img_dict
def __repr__(self):
return self.__class__.__name__ + '(eps={0}, p={1})'.format(self.eps, self.p)
if __name__ == "__main__":
ls = LabelSmoothing()
print(repr(ls))