-
Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy pathmodeling.py
828 lines (709 loc) Β· 35.6 KB
/
modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import paddle
import paddle.nn as nn
from paddle import Tensor
from paddlenlp.utils.env import CONFIG_NAME
from .. import PretrainedModel, register_base_model
from ..model_outputs import (
BaseModelOutputWithPoolingAndCrossAttentions,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
tuple_output,
)
from .configuration import (
ERNIE_M_PRETRAINED_INIT_CONFIGURATION,
ERNIE_M_PRETRAINED_RESOURCE_FILES_MAP,
ErnieMConfig,
)
__all__ = [
"ErnieMModel",
"ErnieMPretrainedModel",
"ErnieMForSequenceClassification",
"ErnieMForTokenClassification",
"ErnieMForQuestionAnswering",
"ErnieMForMultipleChoice",
"UIEM",
]
class ErnieMEmbeddings(nn.Layer):
r"""
Include embeddings from word, position.
"""
def __init__(self, config: ErnieMConfig):
super(ErnieMEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self,
input_ids: Optional[Tensor] = None,
position_ids: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
past_key_values_length: int = 0,
):
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
if position_ids is None:
input_shape = paddle.shape(inputs_embeds)[:-1]
# maybe need use shape op to unify static graph and dynamic graph
ones = paddle.ones(input_shape, dtype="int64")
seq_length = paddle.cumsum(ones, axis=1)
position_ids = seq_length - ones
if past_key_values_length > 0:
position_ids = position_ids + past_key_values_length
position_ids.stop_gradient = True
position_ids += 2
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs_embeds + position_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class ErnieMPooler(nn.Layer):
def __init__(self, config: ErnieMConfig):
super(ErnieMPooler, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class ErnieMPretrainedModel(PretrainedModel):
r"""
An abstract class for pretrained ERNIE-M models. It provides ERNIE-M related
`model_config_file`, `pretrained_init_configuration`, `resource_files_names`,
`pretrained_resource_files_map`, `base_model_prefix` for downloading and
loading pretrained models.
Refer to :class:`~paddlenlp.transformers.model_utils.PretrainedModel` for more details.
"""
model_config_file = CONFIG_NAME
config_class = ErnieMConfig
resource_files_names = {"model_state": "model_state.pdparams"}
pretrained_init_configuration = ERNIE_M_PRETRAINED_INIT_CONFIGURATION
pretrained_resource_files_map = ERNIE_M_PRETRAINED_RESOURCE_FILES_MAP
base_model_prefix = "ernie_m"
def init_weights(self, layer):
"""Initialization hook"""
if isinstance(layer, (nn.Linear, nn.Embedding)):
# only support dygraph, use truncated_normal and make it inplace
# and configurable later
if isinstance(layer.weight, paddle.Tensor):
layer.weight.set_value(
paddle.tensor.normal(
mean=0.0,
std=self.config.initializer_range,
shape=layer.weight.shape,
)
)
@register_base_model
class ErnieMModel(ErnieMPretrainedModel):
r"""
The bare ERNIE-M Model transformer outputting raw hidden-states.
This model inherits from :class:`~paddlenlp.transformers.model_utils.PretrainedModel`.
Refer to the superclass documentation for the generic methods.
This model is also a Paddle `paddle.nn.Layer <https://www.paddlepaddle.org.cn/documentation
/docs/en/api/paddle/fluid/dygraph/layers/Layer_en.html>`__ subclass. Use it as a regular Paddle Layer
and refer to the Paddle documentation for all matter related to general usage and behavior.
Args:
config (:class:`ErnieMConfig`):
An instance of ErnieMConfig used to construct ErnieMModel.
"""
def __init__(self, config: ErnieMConfig):
super(ErnieMModel, self).__init__(config)
self.pad_token_id = config.pad_token_id
self.initializer_range = config.initializer_range
self.embeddings = ErnieMEmbeddings(config)
encoder_layer = nn.TransformerEncoderLayer(
config.hidden_size,
config.num_attention_heads,
dim_feedforward=4 * config.hidden_size,
dropout=config.hidden_dropout_prob,
activation=config.hidden_act,
attn_dropout=config.attention_probs_dropout_prob,
act_dropout=0,
normalize_before=False,
)
self.encoder = nn.TransformerEncoder(encoder_layer, config.num_hidden_layers)
self.pooler = ErnieMPooler(config)
self.apply(self.init_weights)
def forward(
self,
input_ids: Optional[Tensor] = None,
position_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
past_key_values: Optional[Tuple[Tuple[Tensor]]] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (Tensor):
Indices of input sequence tokens in the vocabulary. They are
numerical representations of tokens that build the input sequence.
It's data type should be `int64` and has a shape of [batch_size, sequence_length].
position_ids (Tensor, optional):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
max_position_embeddings - 1]``.
Shape as `[batch_size, num_tokens]` and dtype as int64. Defaults to `None`.
attention_mask (Tensor, optional):
Mask used in multi-head attention to avoid performing attention on to some unwanted positions,
usually the paddings or the subsequent positions.
Its data type can be int, float and bool.
When the data type is bool, the `masked` tokens have `False` values and the others have `True` values.
When the data type is int, the `masked` tokens have `0` values and the others have `1` values.
When the data type is float, the `masked` tokens have `-INF` values and the others have `0` values.
It is a tensor with shape broadcasted to `[batch_size, num_attention_heads, sequence_length, sequence_length]`.
For example, its shape can be [batch_size, sequence_length], [batch_size, sequence_length, sequence_length],
[batch_size, num_attention_heads, sequence_length, sequence_length].
Defaults to `None`, which means nothing needed to be prevented attention to.
inputs_embeds (Tensor, optional):
If you want to control how to convert `inputs_ids` indices into associated vectors, you can
pass an embedded representation directly instead of passing `inputs_ids`.
past_key_values (tuple(tuple(Tensor)), optional):
The length of tuple equals to the number of layers, and each inner
tuple haves 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`)
which contains precomputed key and value hidden states of the attention blocks.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, optional):
If set to `True`, `past_key_values` key value states are returned.
Defaults to `None`.
output_hidden_states (bool, optional):
Whether to return the hidden states of all layers.
Defaults to `False`.
output_attentions (bool, optional):
Whether to return the attentions tensors of all attention layers.
Defaults to `False`.
return_dict (bool, optional):
Whether to return a :class:`~paddlenlp.transformers.model_outputs.ModelOutput` object. If `False`, the output
will be a tuple of tensors. Defaults to `False`.
Returns:
An instance of :class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPoolingAndCrossAttentions` if
`return_dict=True`. Otherwise it returns a tuple of tensors corresponding
to ordered and not None (depending on the input arguments) fields of
:class:`~paddlenlp.transformers.model_outputs.BaseModelOutputWithPoolingAndCrossAttentions`.
tuple: Returns tuple (``sequence_output``, ``pooled_output``).
With the fields:
- `sequence_output` (Tensor):
Sequence of hidden-states at the last layer of the model.
It's data type should be float32 and its shape is [batch_size, sequence_length, hidden_size].
- `pooled_output` (Tensor):
The output of first token (`[CLS]`) in sequence.
We "pool" the model by simply taking the hidden state corresponding to the first token.
Its data type should be float32 and its shape is [batch_size, hidden_size].
Example:
.. code-block::
import paddle
from paddlenlp.transformers import ErnieMModel, ErnieMTokenizer
tokenizer = ErnieMTokenizer.from_pretrained('ernie-m-base')
model = ErnieMModel.from_pretrained('ernie-m-base')
inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!")
inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}
sequence_output, pooled_output = model(**inputs)
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time.")
# init the default bool value
output_attentions = output_attentions if output_attentions is not None else False
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
return_dict = return_dict if return_dict is not None else False
use_cache = use_cache if use_cache is not None else False
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
if attention_mask is None:
attention_mask = paddle.unsqueeze(
(input_ids == self.pad_token_id).astype(self.pooler.dense.weight.dtype) * -1e4, axis=[1, 2]
)
if past_key_values is not None:
batch_size = past_key_values[0][0].shape[0]
past_mask = paddle.zeros([batch_size, 1, 1, past_key_values_length], dtype=attention_mask.dtype)
attention_mask = paddle.concat([past_mask, attention_mask], axis=-1)
# For 2D attention_mask from tokenizer
elif attention_mask.ndim == 2:
attention_mask = paddle.unsqueeze(attention_mask, axis=[1, 2]).astype(paddle.get_default_dtype())
attention_mask = (1.0 - attention_mask) * -1e4
attention_mask.stop_gradient = True
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
self.encoder._use_cache = use_cache # To be consistent with HF
encoder_outputs = self.encoder(
embedding_output,
attention_mask,
cache=past_key_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if isinstance(encoder_outputs, type(embedding_output)):
sequence_output = encoder_outputs
pooled_output = self.pooler(sequence_output)
return (sequence_output, pooled_output)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class ErnieMForSequenceClassification(ErnieMPretrainedModel):
r"""
Ernie-M Model with a linear layer on top of the output layer,
designed for sequence classification/regression tasks like GLUE tasks.
Args:
config (:class:`ErnieMConfig`):
An instance of ErnieMConfig used to construct ErnieMForSequenceClassification.
"""
def __init__(self, config: ErnieMConfig):
super(ErnieMForSequenceClassification, self).__init__(config)
self.ernie_m = ErnieMModel(config)
self.num_labels = config.num_labels
self.dropout = nn.Dropout(
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.apply(self.init_weights)
def forward(
self,
input_ids: Optional[Tensor] = None,
position_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
labels: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (Tensor):
See :class:`ErnieMModel`.
position_ids (Tensor, optional):
See :class:`ErnieMModel`.
attention_mask (Tensor, optional):
See :class:`ErnieMModel`.
labels (Tensor of shape `(batch_size,)`, optional):
Labels for computing the sequence classification/regression loss.
Indices should be in `[0, ..., num_labels - 1]`. If `num_labels == 1`
a regression loss is computed (Mean-Square loss), If `num_labels > 1`
a classification loss is computed (Cross-Entropy).
inputs_embeds (Tensor, optional):
If you want to control how to convert `inputs_ids` indices into associated vectors, you can
pass an embedded representation directly instead of passing `inputs_ids`.
output_hidden_states (bool, optional):
Whether to return the hidden states of all layers.
Defaults to `False`.
output_attentions (bool, optional):
Whether to return the attentions tensors of all attention layers.
Defaults to `False`.
return_dict (bool, optional):
Whether to return a :class:`~paddlenlp.transformers.model_outputs.SequenceClassifierOutput` object. If
`False`, the output will be a tuple of tensors. Defaults to `False`.
Returns:
An instance of :class:`~paddlenlp.transformers.model_outputs.SequenceClassifierOutput` if `return_dict=True`.
Otherwise it returns a tuple of tensors corresponding to ordered and
not None (depending on the input arguments) fields of :class:`~paddlenlp.transformers.model_outputs.SequenceClassifierOutput`.
Example:
.. code-block::
import paddle
from paddlenlp.transformers import ErnieMForSequenceClassification, ErnieMTokenizer
tokenizer = ErnieMTokenizer.from_pretrained('ernie-m-base')
model = ErnieMForSequenceClassification.from_pretrained('ernie-m-base')
inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!")
inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}
logits = model(**inputs)
"""
outputs = self.ernie_m(
input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = self.dropout(outputs[1])
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.num_labels == 1:
loss_fct = paddle.nn.MSELoss()
loss = loss_fct(logits, labels)
elif labels.dtype == paddle.int64 or labels.dtype == paddle.int32:
loss_fct = paddle.nn.CrossEntropyLoss()
loss = loss_fct(logits.reshape((-1, self.num_labels)), labels.reshape((-1,)))
else:
loss_fct = paddle.nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return tuple_output(output, loss)
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class ErnieMForQuestionAnswering(ErnieMPretrainedModel):
"""
Ernie-M Model with a linear layer on top of the hidden-states
output to compute `span_start_logits` and `span_end_logits`,
designed for question-answering tasks like SQuAD.
Args:
config (:class:`ErnieMConfig`):
An instance of ErnieMConfig used to construct ErnieMForQuestionAnswering.
"""
def __init__(self, config: ErnieMConfig):
super(ErnieMForQuestionAnswering, self).__init__(config)
self.ernie_m = ErnieMModel(config)
self.classifier = nn.Linear(config.hidden_size, 2)
self.apply(self.init_weights)
def forward(
self,
input_ids: Optional[Tensor] = None,
position_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
start_positions: Optional[Tensor] = None,
end_positions: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (Tensor):
See :class:`ErnieMModel`.
position_ids (Tensor, optional):
See :class:`ErnieMModel`.
attention_mask (Tensor, optional):
See :class:`ErnieMModel`.
start_positions (Tensor of shape `(batch_size,)`, optional):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (Tensor of shape `(batch_size,)`, optional):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
inputs_embeds (Tensor, optional):
If you want to control how to convert `inputs_ids` indices into associated vectors, you can
pass an embedded representation directly instead of passing `inputs_ids`.
output_hidden_states (bool, optional):
Whether to return the hidden states of all layers.
Defaults to `False`.
output_attentions (bool, optional):
Whether to return the attentions tensors of all attention layers.
Defaults to `False`.
return_dict (bool, optional):
Whether to return a :class:`~paddlenlp.transformers.model_outputs.QuestionAnsweringModelOutput` object. If
`False`, the output will be a tuple of tensors. Defaults to `False`.
Returns:
tuple: Returns tuple (`start_logits`, `end_logits`).
With the fields:
- `start_logits` (Tensor):
A tensor of the input token classification logits, indicates the start position of the labelled span.
Its data type should be float32 and its shape is [batch_size, sequence_length].
- `end_logits` (Tensor):
A tensor of the input token classification logits, indicates the end position of the labelled span.
Its data type should be float32 and its shape is [batch_size, sequence_length].
Example:
.. code-block::
import paddle
from paddlenlp.transformers import ErnieMForQuestionAnswering, ErnieMTokenizer
tokenizer = ErnieMTokenizer.from_pretrained('ernie-m-base')
model = ErnieMForQuestionAnswering.from_pretrained('ernie-m-base')
inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!")
inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}
logits = model(**inputs)
"""
outputs = self.ernie_m(
input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.classifier(outputs[0])
logits = paddle.transpose(logits, perm=[2, 0, 1])
start_logits, end_logits = paddle.unstack(x=logits, axis=0)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if start_positions.ndim > 1:
start_positions = start_positions.squeeze(-1)
if start_positions.ndim > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = paddle.shape(start_logits)[1]
start_positions = start_positions.clip(0, ignored_index)
end_positions = end_positions.clip(0, ignored_index)
loss_fct = paddle.nn.CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return tuple_output(output, total_loss)
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class ErnieMForTokenClassification(ErnieMPretrainedModel):
r"""
ERNIE-M Model with a linear layer on top of the hidden-states output layer,
designed for token classification tasks like NER tasks.
Args:
config (:class:`ErnieMConfig`):
An instance of ErnieMConfig used to construct ErnieMForTokenClassification.
"""
def __init__(self, config: ErnieMConfig):
super(ErnieMForTokenClassification, self).__init__(config)
self.ernie_m = ErnieMModel(config)
self.num_labels = config.num_labels
self.dropout = nn.Dropout(
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.apply(self.init_weights)
def forward(
self,
input_ids: Optional[Tensor] = None,
position_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
labels: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (Tensor):
See :class:`ErnieMModel`.
position_ids (Tensor, optional):
See :class:`ErnieMModel`.
attention_mask (Tensor, optional):
See :class:`ErnieMModel`.
labels (Tensor of shape `(batch_size, sequence_length)`, optional):
Labels for computing the token classification loss. Indices should be in `[0, ..., num_labels - 1]`.
inputs_embeds (Tensor, optional):
If you want to control how to convert `inputs_ids` indices into associated vectors, you can
pass an embedded representation directly instead of passing `inputs_ids`.
output_hidden_states (bool, optional):
Whether to return the hidden states of all layers.
Defaults to `False`.
output_attentions (bool, optional):
Whether to return the attentions tensors of all attention layers.
Defaults to `False`.
return_dict (bool, optional):
Whether to return a :class:`~paddlenlp.transformers.model_outputs.TokenClassifierOutput` object. If
`False`, the output will be a tuple of tensors. Defaults to `False`.
Returns:
Tensor: Returns tensor `logits`, a tensor of the input token classification logits.
Shape as `[batch_size, sequence_length, num_labels]` and dtype as `float32`.
Example:
.. code-block::
import paddle
from paddlenlp.transformers import ErnieMForTokenClassification, ErnieMTokenizer
tokenizer = ErnieMTokenizer.from_pretrained('ernie-m-base')
model = ErnieMForTokenClassification.from_pretrained('ernie-m-base')
inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!")
inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}
logits = model(**inputs)
"""
outputs = self.ernie_m(
input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = self.dropout(outputs[0])
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = paddle.nn.CrossEntropyLoss()
loss = loss_fct(logits.reshape((-1, self.num_labels)), labels.reshape((-1,)))
if not return_dict:
output = (logits,) + outputs[2:]
return tuple_output(output, loss)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class ErnieMForMultipleChoice(ErnieMPretrainedModel):
"""
ERNIE-M with a linear layer on top of the hidden-states output layer,
designed for multiple choice tasks like RocStories/SWAG tasks.
Args:
config (:class:`ErnieMConfig`):
An instance of ErnieMConfig used to construct ErnieMForMultipleChoice.
"""
def __init__(self, config: ErnieMConfig):
super(ErnieMForMultipleChoice, self).__init__(config)
self.ernie_m = ErnieMModel(config)
self.num_choices = config.num_choices
self.dropout = nn.Dropout(
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.classifier = nn.Linear(config.hidden_size, 1)
self.apply(self.init_weights)
def forward(
self,
input_ids: Optional[Tensor] = None,
position_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
labels: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
The ErnieMForMultipleChoice forward method, overrides the __call__() special method.
Args:
input_ids (Tensor):
See :class:`ErnieMModel` and shape as [batch_size, num_choice, sequence_length].
position_ids(Tensor, optional):
See :class:`ErnieMModel` and shape as [batch_size, num_choice, sequence_length].
attention_mask (list, optional):
See :class:`ErnieMModel` and shape as [batch_size, num_choice, sequence_length].
labels (Tensor of shape `(batch_size, )`, optional):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
inputs_embeds (Tensor, optional):
If you want to control how to convert `inputs_ids` indices into associated vectors, you can
pass an embedded representation directly instead of passing `inputs_ids`.
output_hidden_states (bool, optional):
Whether to return the hidden states of all layers.
Defaults to `False`.
output_attentions (bool, optional):
Whether to return the attentions tensors of all attention layers.
Defaults to `False`.
return_dict (bool, optional):
Whether to return a :class:`~paddlenlp.transformers.model_outputs.MultipleChoiceModelOutput` object. If
`False`, the output will be a tuple of tensors. Defaults to `False`.
Returns:
An instance of :class:`~paddlenlp.transformers.model_outputs.MultipleChoiceModelOutput` if `return_dict=True`.
Otherwise it returns a tuple of tensors corresponding to ordered and
not None (depending on the input arguments) fields of :class:`~paddlenlp.transformers.model_outputs.MultipleChoiceModelOutput`.
"""
# input_ids: [bs, num_choice, seq_l]
input_ids = input_ids.reshape(shape=(-1, input_ids.shape[-1])) # flat_input_ids: [bs*num_choice,seq_l]
if position_ids is not None:
position_ids = position_ids.reshape(shape=(-1, position_ids.shape[-1]))
if attention_mask is not None:
attention_mask = attention_mask.reshape(shape=(-1, attention_mask.shape[-1]))
outputs = self.ernie_m(
input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = self.dropout(outputs[1])
logits = self.classifier(pooled_output) # logits: (bs*num_choice,1)
reshaped_logits = logits.reshape(shape=(-1, self.num_choices)) # logits: (bs, num_choice)
loss = None
if labels is not None:
loss_fct = paddle.nn.CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return tuple_output(output, loss)
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class UIEM(ErnieMPretrainedModel):
"""
Ernie-M Model with two linear layer on top of the hidden-states
output to compute `start_prob` and `end_prob`,
designed for Universal Information Extraction.
Args:
config (:class:`ErnieMConfig`):
An instance of ErnieMConfig used to construct UIEM.
"""
def __init__(self, config: ErnieMConfig):
super(UIEM, self).__init__(config)
self.ernie_m = ErnieMModel(config)
self.linear_start = paddle.nn.Linear(config.hidden_size, 1)
self.linear_end = paddle.nn.Linear(config.hidden_size, 1)
self.sigmoid = nn.Sigmoid()
self.apply(self.init_weights)
def forward(self, input_ids, position_ids=None, attention_mask=None):
r"""
Args:
input_ids (Tensor):
See :class:`ErnieMModel`.
position_ids (Tensor, optional):
See :class:`ErnieMModel`.
attention_mask (Tensor, optional):
See :class:`ErnieMModel`.
Example:
.. code-block::
import paddle
from paddlenlp.transformers import UIEM, ErnieMTokenizer
tokenizer = ErnieMTokenizer.from_pretrained('uie-m-base')
model = UIEM.from_pretrained('uie-m-base')
inputs = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!")
inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}
start_prob, end_prob = model(**inputs)
"""
sequence_output, _ = self.ernie_m(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
)
start_logits = self.linear_start(sequence_output)
start_logits = paddle.squeeze(start_logits, -1)
start_prob = self.sigmoid(start_logits)
end_logits = self.linear_end(sequence_output)
end_logits = paddle.squeeze(end_logits, -1)
end_prob = self.sigmoid(end_logits)
# TODO: add return dict support
return start_prob, end_prob