-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathpost_process.py
805 lines (707 loc) · 31.8 KB
/
post_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from ppdet.modeling.bbox_utils import nonempty_bbox
from .transformers import bbox_cxcywh_to_xyxy
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
__all__ = [
'BBoxPostProcess', 'MaskPostProcess', 'JDEBBoxPostProcess',
'CenterNetPostProcess', 'DETRPostProcess', 'SparsePostProcess',
'DETRBBoxSemiPostProcess'
]
@register
class BBoxPostProcess(object):
__shared__ = ['num_classes', 'export_onnx', 'export_eb']
__inject__ = ['decode', 'nms']
def __init__(self,
num_classes=80,
decode=None,
nms=None,
export_onnx=False,
export_eb=False):
super(BBoxPostProcess, self).__init__()
self.num_classes = num_classes
self.decode = decode
self.nms = nms
self.export_onnx = export_onnx
self.export_eb = export_eb
def __call__(self, head_out, rois, im_shape, scale_factor):
"""
Decode the bbox and do NMS if needed.
Args:
head_out (tuple): bbox_pred and cls_prob of bbox_head output.
rois (tuple): roi and rois_num of rpn_head output.
im_shape (Tensor): The shape of the input image.
scale_factor (Tensor): The scale factor of the input image.
export_onnx (bool): whether export model to onnx
Returns:
bbox_pred (Tensor): The output prediction with shape [N, 6], including
labels, scores and bboxes. The size of bboxes are corresponding
to the input image, the bboxes may be used in other branch.
bbox_num (Tensor): The number of prediction boxes of each batch with
shape [1], and is N.
"""
if self.nms is not None:
bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
bbox_pred, bbox_num, before_nms_indexes = self.nms(bboxes, score,
self.num_classes)
else:
bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
scale_factor)
if self.export_onnx:
# add fake box after postprocess when exporting onnx
fake_bboxes = paddle.to_tensor(
np.array(
[[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))
bbox_pred = paddle.concat([bbox_pred, fake_bboxes])
bbox_num = bbox_num + 1
if self.nms is not None:
return bbox_pred, bbox_num, before_nms_indexes
else:
return bbox_pred, bbox_num
def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
"""
Rescale, clip and filter the bbox from the output of NMS to
get final prediction.
Notes:
Currently only support bs = 1.
Args:
bboxes (Tensor): The output bboxes with shape [N, 6] after decode
and NMS, including labels, scores and bboxes.
bbox_num (Tensor): The number of prediction boxes of each batch with
shape [1], and is N.
im_shape (Tensor): The shape of the input image.
scale_factor (Tensor): The scale factor of the input image.
Returns:
pred_result (Tensor): The final prediction results with shape [N, 6]
including labels, scores and bboxes.
"""
if self.export_eb:
# enable rcnn models for edgeboard hw to skip the following postprocess.
return bboxes, bboxes, bbox_num
if not self.export_onnx:
bboxes_list = []
bbox_num_list = []
id_start = 0
fake_bboxes = paddle.to_tensor(
np.array(
[[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))
fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
# add fake bbox when output is empty for each batch
for i in range(bbox_num.shape[0]):
if bbox_num[i] == 0:
bboxes_i = fake_bboxes
bbox_num_i = fake_bbox_num
else:
bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
bbox_num_i = bbox_num[i:i + 1]
# id_start: 0-dim, bbox_num: 1-dim. Use bbox_num[i] instead of bbox_num[i:i+1] in pir.
id_start += bbox_num[i]
bboxes_list.append(bboxes_i)
bbox_num_list.append(bbox_num_i)
bboxes = paddle.concat(bboxes_list)
bbox_num = paddle.concat(bbox_num_list)
origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
if not self.export_onnx:
origin_shape_list = []
scale_factor_list = []
# scale_factor: scale_y, scale_x
for i in range(bbox_num.shape[0]):
expand_shape = paddle.expand(origin_shape[i:i + 1, :],
[bbox_num[i:i + 1], 2])
scale_y, scale_x = scale_factor[i, 0], scale_factor[i, 1]
# TODO(PIR): something wrong with slice op, remove unsqueeze in the future.
scale_y = paddle.unsqueeze(scale_y, 0)
scale_x = paddle.unsqueeze(scale_x, 0)
scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
expand_scale = paddle.expand(scale, [bbox_num[i:i + 1], 4])
origin_shape_list.append(expand_shape)
scale_factor_list.append(expand_scale)
self.origin_shape_list = paddle.concat(origin_shape_list)
scale_factor_list = paddle.concat(scale_factor_list)
else:
# simplify the computation for bs=1 when exporting onnx
scale_y, scale_x = scale_factor[0][0], scale_factor[0][1]
scale = paddle.concat(
[scale_x, scale_y, scale_x, scale_y]).unsqueeze(0)
self.origin_shape_list = paddle.expand(origin_shape,
[bbox_num[0:1], 2])
scale_factor_list = paddle.expand(scale, [bbox_num[0:1], 4])
# bboxes: [N, 6], label, score, bbox
pred_label = bboxes[:, 0:1]
pred_score = bboxes[:, 1:2]
pred_bbox = bboxes[:, 2:]
# rescale bbox to original image
scaled_bbox = pred_bbox / scale_factor_list
origin_h = self.origin_shape_list[:, 0]
origin_w = self.origin_shape_list[:, 1]
zeros = paddle.zeros_like(origin_h)
# clip bbox to [0, original_size]
x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
# filter empty bbox
keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
keep_mask = paddle.unsqueeze(keep_mask, [1])
pred_label = paddle.where(keep_mask, pred_label,
paddle.ones_like(pred_label) * -1)
pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
return bboxes, pred_result, bbox_num
def get_origin_shape(self, ):
return self.origin_shape_list
@register
class MaskPostProcess(object):
__shared__ = ['export_onnx', 'assign_on_cpu']
"""
refer to:
https://github.com/facebookresearch/detectron2/layers/mask_ops.py
Get Mask output according to the output from model
"""
def __init__(self,
binary_thresh=0.5,
export_onnx=False,
assign_on_cpu=False):
super(MaskPostProcess, self).__init__()
self.binary_thresh = binary_thresh
self.export_onnx = export_onnx
self.assign_on_cpu = assign_on_cpu
def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
"""
Decode the mask_out and paste the mask to the origin image.
Args:
mask_out (Tensor): mask_head output with shape [N, 28, 28].
bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
and NMS, including labels, scores and bboxes.
bbox_num (Tensor): The number of prediction boxes of each batch with
shape [1], and is N.
origin_shape (Tensor): The origin shape of the input image, the tensor
shape is [N, 2], and each row is [h, w].
Returns:
pred_result (Tensor): The final prediction mask results with shape
[N, h, w] in binary mask style.
"""
num_mask = mask_out.shape[0]
origin_shape = paddle.cast(origin_shape, 'int32')
device = paddle.device.get_device()
if self.export_onnx:
h, w = origin_shape[0][0], origin_shape[0][1]
mask_onnx = paste_mask(mask_out[:, None, :, :], bboxes[:, 2:], h, w,
self.assign_on_cpu)
mask_onnx = mask_onnx >= self.binary_thresh
pred_result = paddle.cast(mask_onnx, 'int32')
else:
max_h = paddle.max(origin_shape[:, 0])
max_w = paddle.max(origin_shape[:, 1])
pred_result = paddle.zeros(
[num_mask, max_h, max_w], dtype='int32') - 1
id_start = 0
for i in range(bbox_num.shape[0]):
bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
mask_out_i = mask_out[id_start:id_start + bbox_num[i], :, :]
im_h = origin_shape[i, 0]
im_w = origin_shape[i, 1]
pred_mask = paste_mask(mask_out_i[:, None, :, :],
bboxes_i[:, 2:], im_h, im_w,
self.assign_on_cpu)
pred_mask = paddle.cast(pred_mask >= self.binary_thresh,
'int32')
pred_result[id_start:id_start + bbox_num[i], :im_h, :
im_w] = pred_mask
id_start += bbox_num[i]
if self.assign_on_cpu:
paddle.set_device(device)
return pred_result
@register
class JDEBBoxPostProcess(nn.Layer):
__shared__ = ['num_classes']
__inject__ = ['decode', 'nms']
def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True):
super(JDEBBoxPostProcess, self).__init__()
self.num_classes = num_classes
self.decode = decode
self.nms = nms
self.return_idx = return_idx
self.fake_bbox_pred = paddle.to_tensor(
np.array(
[[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
self.fake_nms_keep_idx = paddle.to_tensor(
np.array(
[[0]], dtype='int32'))
self.fake_yolo_boxes_out = paddle.to_tensor(
np.array(
[[[0.0, 0.0, 0.0, 0.0]]], dtype='float32'))
self.fake_yolo_scores_out = paddle.to_tensor(
np.array(
[[[0.0]]], dtype='float32'))
self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64'))
def forward(self, head_out, anchors):
"""
Decode the bbox and do NMS for JDE model.
Args:
head_out (list): Bbox_pred and cls_prob of bbox_head output.
anchors (list): Anchors of JDE model.
Returns:
boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'.
bbox_pred (Tensor): The output is the prediction with shape [N, 6]
including labels, scores and bboxes.
bbox_num (Tensor): The number of prediction of each batch with shape [N].
nms_keep_idx (Tensor): The index of kept bboxes after NMS.
"""
boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors)
if len(boxes_idx) == 0:
boxes_idx = self.fake_boxes_idx
yolo_boxes_out = self.fake_yolo_boxes_out
yolo_scores_out = self.fake_yolo_scores_out
else:
yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx)
# TODO: only support bs=1 now
yolo_boxes_out = paddle.reshape(
yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4])
yolo_scores_out = paddle.reshape(
yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)])
boxes_idx = boxes_idx[:, 1:]
if self.return_idx:
bbox_pred, bbox_num, nms_keep_idx = self.nms(
yolo_boxes_out, yolo_scores_out, self.num_classes)
if bbox_pred.shape[0] == 0:
bbox_pred = self.fake_bbox_pred
bbox_num = self.fake_bbox_num
nms_keep_idx = self.fake_nms_keep_idx
return boxes_idx, bbox_pred, bbox_num, nms_keep_idx
else:
bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out,
self.num_classes)
if bbox_pred.shape[0] == 0:
bbox_pred = self.fake_bbox_pred
bbox_num = self.fake_bbox_num
return _, bbox_pred, bbox_num, _
@register
class CenterNetPostProcess(object):
"""
Postprocess the model outputs to get final prediction:
1. Do NMS for heatmap to get top `max_per_img` bboxes.
2. Decode bboxes using center offset and box size.
3. Rescale decoded bboxes reference to the origin image shape.
Args:
max_per_img(int): the maximum number of predicted objects in a image,
500 by default.
down_ratio(int): the down ratio from images to heatmap, 4 by default.
regress_ltrb (bool): whether to regress left/top/right/bottom or
width/height for a box, true by default.
"""
__shared__ = ['down_ratio']
def __init__(self, max_per_img=500, down_ratio=4, regress_ltrb=True):
super(CenterNetPostProcess, self).__init__()
self.max_per_img = max_per_img
self.down_ratio = down_ratio
self.regress_ltrb = regress_ltrb
# _simple_nms() _topk() are same as TTFBox in ppdet/modeling/layers.py
def _simple_nms(self, heat, kernel=3):
""" Use maxpool to filter the max score, get local peaks. """
pad = (kernel - 1) // 2
hmax = F.max_pool2d(heat, kernel, stride=1, padding=pad)
keep = paddle.cast(hmax == heat, 'float32')
return heat * keep
def _topk(self, scores):
""" Select top k scores and decode to get xy coordinates. """
k = self.max_per_img
shape_fm = paddle.shape(scores)
shape_fm.stop_gradient = True
cat, height, width = shape_fm[1], shape_fm[2], shape_fm[3]
# batch size is 1
scores_r = paddle.reshape(scores, [cat, -1])
topk_scores, topk_inds = paddle.topk(scores_r, k)
topk_ys = topk_inds // width
topk_xs = topk_inds % width
topk_score_r = paddle.reshape(topk_scores, [-1])
topk_score, topk_ind = paddle.topk(topk_score_r, k)
k_t = paddle.full(topk_ind.shape, k, dtype='int64')
topk_clses = paddle.cast(paddle.floor_divide(topk_ind, k_t), 'float32')
topk_inds = paddle.reshape(topk_inds, [-1])
topk_ys = paddle.reshape(topk_ys, [-1, 1])
topk_xs = paddle.reshape(topk_xs, [-1, 1])
topk_inds = paddle.gather(topk_inds, topk_ind)
topk_ys = paddle.gather(topk_ys, topk_ind)
topk_xs = paddle.gather(topk_xs, topk_ind)
return topk_score, topk_inds, topk_clses, topk_ys, topk_xs
def __call__(self, hm, wh, reg, im_shape, scale_factor):
# 1.get clses and scores, note that hm had been done sigmoid
heat = self._simple_nms(hm)
scores, inds, topk_clses, ys, xs = self._topk(heat)
clses = topk_clses.unsqueeze(1)
scores = scores.unsqueeze(1)
# 2.get bboxes, note only support batch_size=1 now
reg_t = paddle.transpose(reg, [0, 2, 3, 1])
reg = paddle.reshape(reg_t, [-1, reg_t.shape[-1]])
reg = paddle.gather(reg, inds)
xs = paddle.cast(xs, 'float32')
ys = paddle.cast(ys, 'float32')
xs = xs + reg[:, 0:1]
ys = ys + reg[:, 1:2]
wh_t = paddle.transpose(wh, [0, 2, 3, 1])
wh = paddle.reshape(wh_t, [-1, wh_t.shape[-1]])
wh = paddle.gather(wh, inds)
if self.regress_ltrb:
x1 = xs - wh[:, 0:1]
y1 = ys - wh[:, 1:2]
x2 = xs + wh[:, 2:3]
y2 = ys + wh[:, 3:4]
else:
x1 = xs - wh[:, 0:1] / 2
y1 = ys - wh[:, 1:2] / 2
x2 = xs + wh[:, 0:1] / 2
y2 = ys + wh[:, 1:2] / 2
n, c, feat_h, feat_w = paddle.shape(hm)
padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2
padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2
x1 = x1 * self.down_ratio
y1 = y1 * self.down_ratio
x2 = x2 * self.down_ratio
y2 = y2 * self.down_ratio
x1 = x1 - padw
y1 = y1 - padh
x2 = x2 - padw
y2 = y2 - padh
bboxes = paddle.concat([x1, y1, x2, y2], axis=1)
scale_y = scale_factor[:, 0:1]
scale_x = scale_factor[:, 1:2]
scale_expand = paddle.concat(
[scale_x, scale_y, scale_x, scale_y], axis=1)
boxes_shape = bboxes.shape[:]
scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
bboxes = paddle.divide(bboxes, scale_expand)
results = paddle.concat([clses, scores, bboxes], axis=1)
return results, paddle.shape(results)[0:1], inds, topk_clses, ys, xs
@register
class DETRPostProcess(object):
__shared__ = ['num_classes', 'use_focal_loss', 'with_mask']
__inject__ = []
def __init__(self,
num_classes=80,
num_top_queries=100,
dual_queries=False,
dual_groups=0,
use_focal_loss=False,
with_mask=False,
mask_stride=4,
mask_threshold=0.5,
use_avg_mask_score=False,
bbox_decode_type='origin'):
super(DETRPostProcess, self).__init__()
assert bbox_decode_type in ['origin', 'pad']
self.num_classes = num_classes
self.num_top_queries = num_top_queries
self.dual_queries = dual_queries
self.dual_groups = dual_groups
self.use_focal_loss = use_focal_loss
self.with_mask = with_mask
self.mask_stride = mask_stride
self.mask_threshold = mask_threshold
self.use_avg_mask_score = use_avg_mask_score
self.bbox_decode_type = bbox_decode_type
def _mask_postprocess(self, mask_pred, score_pred):
mask_score = F.sigmoid(mask_pred)
mask_pred = (mask_score > self.mask_threshold).astype(mask_score.dtype)
if self.use_avg_mask_score:
avg_mask_score = (mask_pred * mask_score).sum([-2, -1]) / (
mask_pred.sum([-2, -1]) + 1e-6)
score_pred *= avg_mask_score
return mask_pred.flatten(0, 1).astype('int32'), score_pred
def __call__(self, head_out, im_shape, scale_factor, pad_shape):
"""
Decode the bbox and mask.
Args:
head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output.
im_shape (Tensor): The shape of the input image without padding.
scale_factor (Tensor): The scale factor of the input image.
pad_shape (Tensor): The shape of the input image with padding.
Returns:
bbox_pred (Tensor): The output prediction with shape [N, 6], including
labels, scores and bboxes. The size of bboxes are corresponding
to the input image, the bboxes may be used in other branch.
bbox_num (Tensor): The number of prediction boxes of each batch with
shape [bs], and is N.
"""
bboxes, logits, masks = head_out
if self.dual_queries:
num_queries = logits.shape[1]
logits, bboxes = logits[:, :int(num_queries // (self.dual_groups + 1)), :], \
bboxes[:, :int(num_queries // (self.dual_groups + 1)), :]
bbox_pred = bbox_cxcywh_to_xyxy(bboxes)
# calculate the original shape of the image
origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
img_h, img_w = paddle.split(origin_shape, 2, axis=-1)
if self.bbox_decode_type == 'pad':
# calculate the shape of the image with padding
out_shape = pad_shape / im_shape * origin_shape
out_shape = out_shape.flip(1).tile([1, 2]).unsqueeze(1)
elif self.bbox_decode_type == 'origin':
out_shape = origin_shape.flip(1).tile([1, 2]).unsqueeze(1)
else:
raise Exception(
f'Wrong `bbox_decode_type`: {self.bbox_decode_type}.')
bbox_pred *= out_shape
scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax(
logits)[:, :, :-1]
if not self.use_focal_loss:
scores, labels = scores.max(-1), scores.argmax(-1)
if scores.shape[1] > self.num_top_queries:
scores, index = paddle.topk(
scores, self.num_top_queries, axis=-1)
batch_ind = paddle.arange(
end=scores.shape[0]).unsqueeze(-1).tile(
[1, self.num_top_queries])
index = paddle.stack([batch_ind, index], axis=-1)
labels = paddle.gather_nd(labels, index)
bbox_pred = paddle.gather_nd(bbox_pred, index)
else:
scores, index = paddle.topk(
scores.flatten(1), self.num_top_queries, axis=-1)
labels = index % self.num_classes
index = index // self.num_classes
batch_ind = paddle.arange(end=scores.shape[0]).unsqueeze(-1).tile(
[1, self.num_top_queries])
index = paddle.stack([batch_ind, index], axis=-1)
bbox_pred = paddle.gather_nd(bbox_pred, index)
mask_pred = None
if self.with_mask:
assert masks is not None
assert masks.shape[0] == 1
masks = paddle.gather_nd(masks, index)
if self.bbox_decode_type == 'pad':
masks = F.interpolate(
masks,
scale_factor=self.mask_stride,
mode="bilinear",
align_corners=False)
# TODO: Support prediction with bs>1.
# remove padding for input image
h, w = im_shape.astype('int32')[0]
masks = masks[..., :h, :w]
# get pred_mask in the original resolution.
img_h = img_h[0].astype('int32')
img_w = img_w[0].astype('int32')
masks = F.interpolate(
masks,
size=[img_h, img_w],
mode="bilinear",
align_corners=False)
mask_pred, scores = self._mask_postprocess(masks, scores)
bbox_pred = paddle.concat(
[
labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1),
bbox_pred
],
axis=-1)
bbox_num = paddle.to_tensor(
self.num_top_queries, dtype='int32').tile([bbox_pred.shape[0]])
bbox_pred = bbox_pred.reshape([-1, 6])
return bbox_pred, bbox_num, mask_pred
@register
class SparsePostProcess(object):
__shared__ = ['num_classes', 'assign_on_cpu']
def __init__(self,
num_proposals,
num_classes=80,
binary_thresh=0.5,
assign_on_cpu=False):
super(SparsePostProcess, self).__init__()
self.num_classes = num_classes
self.num_proposals = num_proposals
self.binary_thresh = binary_thresh
self.assign_on_cpu = assign_on_cpu
def __call__(self, scores, bboxes, scale_factor, ori_shape, masks=None):
assert len(scores) == len(bboxes) == \
len(ori_shape) == len(scale_factor)
device = paddle.device.get_device()
batch_size = len(ori_shape)
scores = F.sigmoid(scores)
has_mask = masks is not None
if has_mask:
masks = F.sigmoid(masks)
masks = masks.reshape([batch_size, -1, *masks.shape[1:]])
bbox_pred = []
mask_pred = [] if has_mask else None
bbox_num = paddle.zeros([batch_size], dtype='int32')
for i in range(batch_size):
score = scores[i]
bbox = bboxes[i]
score, indices = score.flatten(0, 1).topk(
self.num_proposals, sorted=False)
label = indices % self.num_classes
if has_mask:
mask = masks[i]
mask = mask.flatten(0, 1)[indices]
H, W = ori_shape[i][0], ori_shape[i][1]
bbox = bbox[paddle.cast(indices / self.num_classes, indices.dtype)]
bbox /= scale_factor[i]
bbox[:, 0::2] = paddle.clip(bbox[:, 0::2], 0, W)
bbox[:, 1::2] = paddle.clip(bbox[:, 1::2], 0, H)
keep = ((bbox[:, 2] - bbox[:, 0]).numpy() > 1.) & \
((bbox[:, 3] - bbox[:, 1]).numpy() > 1.)
if keep.sum() == 0:
bbox = paddle.zeros([1, 6], dtype='float32')
if has_mask:
mask = paddle.zeros([1, H, W], dtype='uint8')
else:
label = paddle.to_tensor(label.numpy()[keep]).astype(
'float32').unsqueeze(-1)
score = paddle.to_tensor(score.numpy()[keep]).astype(
'float32').unsqueeze(-1)
bbox = paddle.to_tensor(bbox.numpy()[keep]).astype('float32')
if has_mask:
mask = paddle.to_tensor(mask.numpy()[keep]).astype(
'float32').unsqueeze(1)
mask = paste_mask(mask, bbox, H, W, self.assign_on_cpu)
mask = paddle.cast(mask >= self.binary_thresh, 'uint8')
bbox = paddle.concat([label, score, bbox], axis=-1)
bbox_num[i] = bbox.shape[0]
bbox_pred.append(bbox)
if has_mask:
mask_pred.append(mask)
bbox_pred = paddle.concat(bbox_pred)
mask_pred = paddle.concat(mask_pred) if has_mask else None
if self.assign_on_cpu:
paddle.set_device(device)
if has_mask:
return bbox_pred, bbox_num, mask_pred
else:
return bbox_pred, bbox_num
def paste_mask(masks, boxes, im_h, im_w, assign_on_cpu=False):
"""
Paste the mask prediction to the original image.
"""
x0_int, y0_int = 0, 0
x1_int, y1_int = im_w, im_h
x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1)
N = masks.shape[0]
img_y = paddle.arange(y0_int, y1_int) + 0.5
img_x = paddle.arange(x0_int, x1_int) + 0.5
img_y = (img_y - y0) / (y1 - y0) * 2 - 1
img_x = (img_x - x0) / (x1 - x0) * 2 - 1
# img_x, img_y have shapes (N, w), (N, h)
if assign_on_cpu:
paddle.set_device('cpu')
gx = img_x[:, None, :].expand(
[N, img_y.shape[1], img_x.shape[1]])
gy = img_y[:, :, None].expand(
[N, img_y.shape[1], img_x.shape[1]])
grid = paddle.stack([gx, gy], axis=3)
img_masks = F.grid_sample(masks, grid, align_corners=False)
return img_masks[:, 0]
def multiclass_nms(bboxs, num_classes, match_threshold=0.6, match_metric='iou'):
final_boxes = []
for c in range(num_classes):
idxs = bboxs[:, 0] == c
if np.count_nonzero(idxs) == 0: continue
r = nms(bboxs[idxs, 1:], match_threshold, match_metric)
final_boxes.append(np.concatenate([np.full((r.shape[0], 1), c), r], 1))
return final_boxes
def nms(dets, match_threshold=0.6, match_metric='iou'):
""" Apply NMS to avoid detecting too many overlapping bounding boxes.
Args:
dets: shape [N, 5], [score, x1, y1, x2, y2]
match_metric: 'iou' or 'ios'
match_threshold: overlap thresh for match metric.
"""
if dets.shape[0] == 0:
return dets[[], :]
scores = dets[:, 0]
x1 = dets[:, 1]
y1 = dets[:, 2]
x2 = dets[:, 3]
y2 = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
if match_metric == 'iou':
union = areas[i] + areas[order[1:]] - inter
match_value = inter / union
elif match_metric == 'ios':
smaller = np.minimum(areas[i], areas[order[1:]])
match_value = inter / smaller
else:
raise ValueError()
inds = np.where(match_value < match_threshold)[0]
order = order[inds + 1]
dets = dets[keep, :]
return dets
@register
class DETRBBoxSemiPostProcess(object):
__shared__ = ['num_classes', 'use_focal_loss']
__inject__ = []
def __init__(self,
num_classes=80,
num_top_queries=100,
use_focal_loss=False):
super(DETRBBoxSemiPostProcess, self).__init__()
self.num_classes = num_classes
self.num_top_queries = num_top_queries
self.use_focal_loss = use_focal_loss
def __call__(self, head_out):
"""
Decode the bbox.
Args:
head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output.
im_shape (Tensor): The shape of the input image.
scale_factor (Tensor): The scale factor of the input image.
Returns:
bbox_pred (Tensor): The output prediction with shape [N, 6], including
labels, scores and bboxes. The size of bboxes are corresponding
to the input image, the bboxes may be used in other branch.
bbox_num (Tensor): The number of prediction boxes of each batch with
shape [bs], and is N.
"""
bboxes, logits, masks = head_out
bbox_pred = bboxes
scores = F.softmax(logits, axis=2)
import copy
soft_scores = copy.deepcopy(scores)
scores, index = paddle.topk(scores.max(-1), 300, axis=-1)
batch_ind = paddle.arange(end=scores.shape[0]).unsqueeze(-1).tile(
[1, 300])
index = paddle.stack([batch_ind, index], axis=-1)
labels = paddle.gather_nd(soft_scores.argmax(-1), index).astype('int32')
score_class = paddle.gather_nd(soft_scores, index)
bbox_pred = paddle.gather_nd(bbox_pred, index)
bbox_pred = paddle.concat(
[
labels.unsqueeze(-1).astype('float32'), score_class,
scores.unsqueeze(-1), bbox_pred
],
axis=-1)
bbox_num = paddle.to_tensor(
bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]])
bbox_pred = bbox_pred.reshape([-1, bbox_pred.shape[-1]])
return bbox_pred, bbox_num