-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathernie.py
370 lines (310 loc) · 14.1 KB
/
ernie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# -*- coding: utf-8 -*
"""
ERNIE 网络结构
"""
import logging
import paddle
from paddle import nn
from paddle.nn import functional as F
ACT_DICT = {
'relu': nn.ReLU,
'gelu': nn.GELU,
}
class ErnieModel(nn.Layer):
""" ernie model """
def __init__(self, cfg, name=''):
"""
Fundamental pretrained Ernie model
"""
nn.Layer.__init__(self)
self.cfg = cfg
d_model = cfg['hidden_size']
d_emb = cfg.get('emb_size', cfg['hidden_size'])
d_vocab = cfg['vocab_size']
d_pos = cfg['max_position_embeddings']
# d_sent = cfg.get("sent_type_vocab_size", 4) or cfg.get('type_vocab_size', 4)
if cfg.has('sent_type_vocab_size'):
d_sent = cfg['sent_type_vocab_size']
else:
d_sent = cfg.get('type_vocab_size', 2)
self.n_head = cfg['num_attention_heads']
self.return_additional_info = cfg.get('return_additional_info', False)
self.initializer = nn.initializer.TruncatedNormal(std=cfg['initializer_range'])
self.ln = _build_ln(d_model, name=append_name(name, 'pre_encoder'))
self.word_emb = nn.Embedding(
d_vocab,
d_emb,
weight_attr=paddle.ParamAttr(name=append_name(name, 'word_embedding'), initializer=self.initializer))
self.pos_emb = nn.Embedding(
d_pos,
d_emb,
weight_attr=paddle.ParamAttr(name=append_name(name, 'pos_embedding'), initializer=self.initializer))
# self.sent_emb = nn.Embedding(
# d_sent,
# d_emb,
# weight_attr=paddle.ParamAttr(name=append_name(name, 'sent_embedding'), initializer=self.initializer))
self._use_sent_id = cfg.get('use_sent_id', True)
if self._use_sent_id:
self.sent_emb = nn.Embedding(
d_sent,
d_emb,
weight_attr=paddle.ParamAttr(name=append_name(name, 'sent_embedding'), initializer=self.initializer))
self._use_task_id = cfg.get('use_task_id', False)
if self._use_task_id:
self._task_types = cfg.get('task_type_vocab_size', 3)
logging.info('using task_id, #task_types:{}'.format(self._task_types))
self.task_emb = nn.Embedding(
self._task_types,
d_emb,
weight_attr=paddle.ParamAttr(name=append_name(name, 'task_embedding'), initializer=self.initializer))
prob = cfg['hidden_dropout_prob']
self.dropout = nn.Dropout(p=prob)
self.encoder_stack = ErnieEncoderStack(cfg, append_name(name, 'encoder'))
if cfg.get('has_pooler', True):
self.pooler = _build_linear(cfg['hidden_size'], cfg['hidden_size'], append_name(name, 'pooled_fc'),
self.initializer)
else:
self.pooler = None
self.train()
# FIXME:remove this
def eval(self):
""" eval """
if paddle.in_dynamic_mode():
super(ErnieModel, self).eval()
self.training = False
for l in self.sublayers():
l.training = False
return self
def train(self):
""" train """
if paddle.in_dynamic_mode():
super(ErnieModel, self).train()
self.training = True
for l in self.sublayers():
l.training = True
return self
def forward(self,
src_ids,
sent_ids=None,
pos_ids=None,
input_mask=None,
task_ids=None,
attn_bias=None,
past_cache=None,
use_causal_mask=False):
"""
Args:
src_ids (`Variable` of shape `[batch_size, seq_len]`):
Indices of input sequence tokens in the vocabulary.
sent_ids (optional, `Variable` of shape `[batch_size, seq_len]`):
aka token_type_ids, Segment token indices to indicate first and second portions of the inputs.
if None, assume all tokens come from `segment_a`
pos_ids(optional, `Variable` of shape `[batch_size, seq_len]`):
Indices of positions of each input sequence tokens in the position embeddings.
input_mask(optional `Variable` of shape `[batch_size, seq_len]`):
Mask to avoid performing attention on the padding token indices of the encoder input.
task_ids(optional `Variable` of shape `[batch_size, seq_len]`):
task type for pre_train task type
attn_bias(optional, `Variable` of shape `[batch_size, seq_len, seq_len] or False`):
3D version of `input_mask`, if set, overrides `input_mask`; if set not False, will not apply attention mask
past_cache(optional, tuple of two lists: cached key and cached value,
each is a list of `Variable`s of shape `[batch_size, seq_len, hidden_size]`):
cached key/value tensor that will be concated to generated key/value when performing self attention.
if set, `attn_bias` should not be None.
Returns:
pooled (`Variable` of shape `[batch_size, hidden_size]`):
output logits of pooler classifier
encoded(`Variable` of shape `[batch_size, seq_len, hidden_size]`):
output logits of transformer stack
info (Dictionary):
addtional middle level info, inclues: all hidden stats, k/v caches.
"""
assert len(src_ids.shape) == 2, 'expect src_ids.shape = [batch, sequecen], got %s' % (repr(src_ids.shape))
assert attn_bias is not None if past_cache else True, 'if `past_cache` specified; attn_bias must not be None'
d_seqlen = paddle.shape(src_ids)[1]
if pos_ids is None:
pos_ids = paddle.arange(0, d_seqlen, 1, dtype='int32').reshape([1, -1]).cast('int64')
if attn_bias is None:
if input_mask is None:
input_mask = paddle.cast(src_ids != 0, 'float32')
assert len(input_mask.shape) == 2
input_mask = input_mask.unsqueeze(-1)
attn_bias = input_mask.matmul(input_mask, transpose_y=True)
if use_causal_mask:
sequence = paddle.reshape(paddle.arange(0, d_seqlen, 1, dtype='float32') + 1., [1, 1, -1, 1])
causal_mask = (sequence.matmul(1. / sequence, transpose_y=True) >= 1.).cast('float32')
attn_bias *= causal_mask
else:
assert len(attn_bias.shape) == 3, 'expect attn_bias tobe rank 3, got %r' % attn_bias.shape
attn_bias = (1. - attn_bias) * -10000.0
attn_bias = attn_bias.unsqueeze(1).tile([1, self.n_head, 1, 1]) # avoid broadcast =_=
if sent_ids is None:
sent_ids = paddle.zeros_like(src_ids)
src_embedded = self.word_emb(src_ids)
pos_embedded = self.pos_emb(pos_ids)
# sent_embedded = self.sent_emb(sent_ids)
# embedded = src_embedded + pos_embedded + sent_embedded
embedded = src_embedded + pos_embedded
if self._use_sent_id:
sent_embedded = self.sent_emb(sent_ids)
embedded = embedded + sent_embedded
if self._use_task_id:
task_embeded = self.task_emb(task_ids)
embedded = embedded + task_embeded
embedded = self.dropout(self.ln(embedded))
encoded, hidden_list, cache_list = self.encoder_stack(embedded, attn_bias, past_cache=past_cache)
if self.pooler is not None:
pooled = F.tanh(self.pooler(encoded[:, 0, :]))
else:
pooled = None
additional_info = {
'hiddens': hidden_list,
'caches': cache_list,
}
if self.return_additional_info:
return pooled, encoded, additional_info
return pooled, encoded
class ErnieEncoderStack(nn.Layer):
""" ernie encoder stack """
def __init__(self, cfg, name=None):
super(ErnieEncoderStack, self).__init__()
n_layers = cfg['num_hidden_layers']
self.block = nn.LayerList([
ErnieBlock(cfg, append_name(name, 'layer_%d' % i))
for i in range(n_layers)
])
def forward(self, inputs, attn_bias=None, past_cache=None):
""" forward function """
if past_cache is not None:
assert isinstance(
past_cache, tuple
), 'unknown type of `past_cache`, expect tuple or list. got %s' % repr(type(past_cache))
past_cache = list(zip(*past_cache))
else:
past_cache = [None] * len(self.block)
cache_list_k, cache_list_v, hidden_list = [], [], [inputs]
for b, p in zip(self.block, past_cache):
inputs, cache = b(inputs, attn_bias=attn_bias, past_cache=p)
cache_k, cache_v = cache
cache_list_k.append(cache_k)
cache_list_v.append(cache_v)
hidden_list.append(inputs)
return inputs, hidden_list, (cache_list_k, cache_list_v)
class ErnieBlock(nn.Layer):
""" ernie block class """
def __init__(self, cfg, name=None):
super(ErnieBlock, self).__init__()
d_model = cfg['hidden_size']
self.attn = AttentionLayer(cfg, name=append_name(name, 'multi_head_att'))
self.ln1 = _build_ln(d_model, name=append_name(name, 'post_att'))
self.ffn = PositionWiseFeedForwardLayer(cfg, name=append_name(name, 'ffn'))
self.ln2 = _build_ln(d_model, name=append_name(name, 'post_ffn'))
prob = cfg.get('intermediate_dropout_prob', cfg['hidden_dropout_prob'])
self.dropout = nn.Dropout(p=prob)
def forward(self, inputs, attn_bias=None, past_cache=None):
""" forward """
attn_out, cache = self.attn(inputs, inputs, inputs, attn_bias, past_cache=past_cache) # self attention
attn_out = self.dropout(attn_out)
hidden = attn_out + inputs
hidden = self.ln1(hidden) # dropout/ add/ norm
ffn_out = self.ffn(hidden)
ffn_out = self.dropout(ffn_out)
hidden = ffn_out + hidden
hidden = self.ln2(hidden)
return hidden, cache
class AttentionLayer(nn.Layer):
""" attention layer """
def __init__(self, cfg, name=None):
super(AttentionLayer, self).__init__()
initializer = nn.initializer.TruncatedNormal(std=cfg['initializer_range'])
d_model = cfg['hidden_size']
n_head = cfg['num_attention_heads']
assert d_model % n_head == 0
d_model_q = cfg.get('query_hidden_size_per_head', d_model // n_head) * n_head
d_model_v = cfg.get('value_hidden_size_per_head', d_model // n_head) * n_head
self.n_head = n_head
self.d_key = d_model_q // n_head
self.q = _build_linear(d_model, d_model_q, append_name(name, 'query_fc'), initializer)
self.k = _build_linear(d_model, d_model_q, append_name(name, 'key_fc'), initializer)
self.v = _build_linear(d_model, d_model_v, append_name(name, 'value_fc'), initializer)
self.o = _build_linear(d_model_v, d_model, append_name(name, 'output_fc'), initializer)
self.dropout = nn.Dropout(p=cfg['attention_probs_dropout_prob'])
def forward(self, queries, keys, values, attn_bias, past_cache):
""" layer forward function """
assert len(queries.shape) == len(keys.shape) == len(values.shape) == 3
# bsz, q_len, q_dim = queries.shape
# bsz, k_len, k_dim = keys.shape
# bsz, v_len, v_dim = values.shape
# assert k_len == v_len
q = self.q(queries)
k = self.k(keys)
v = self.v(values)
cache = (k, v)
if past_cache is not None:
cached_k, cached_v = past_cache
k = paddle.concat([cached_k, k], 1)
v = paddle.concat([cached_v, v], 1)
# [batch, head, seq, dim]
q = q.reshape([0, 0, self.n_head, q.shape[-1] // self.n_head]).transpose([0, 2, 1, 3])
# [batch, head, seq, dim]
k = k.reshape([0, 0, self.n_head, k.shape[-1] // self.n_head]).transpose([0, 2, 1, 3])
# [batch, head, seq, dim]
v = v.reshape([0, 0, self.n_head, v.shape[-1] // self.n_head]).transpose([0, 2, 1, 3])
q = q.scale(self.d_key ** -0.5)
score = q.matmul(k, transpose_y=True)
if attn_bias is not None:
score += attn_bias
score = F.softmax(score)
score = self.dropout(score)
out = score.matmul(v).transpose([0, 2, 1, 3])
out = out.reshape([0, 0, out.shape[2] * out.shape[3]])
out = self.o(out)
return out, cache
class PositionWiseFeedForwardLayer(nn.Layer):
""" post wise feed forward layer """
def __init__(self, cfg, name=None):
super(PositionWiseFeedForwardLayer, self).__init__()
initializer = nn.initializer.TruncatedNormal(std=cfg['initializer_range'])
d_model = cfg['hidden_size']
d_ffn = cfg.get('intermediate_size', 4 * d_model)
self.act = ACT_DICT[cfg['hidden_act']]()
self.i = _build_linear(d_model, d_ffn, append_name(name, 'fc_0'), initializer)
self.o = _build_linear(d_ffn, d_model, append_name(name, 'fc_1'), initializer)
prob = cfg.get('intermediate_dropout_prob', 0.)
self.dropout = nn.Dropout(p=prob)
def forward(self, inputs):
""" forward """
hidden = self.act(self.i(inputs))
hidden = self.dropout(hidden)
out = self.o(hidden)
return out
def _build_linear(n_in, n_out, name, init):
"""
"""
return nn.Linear(
n_in,
n_out,
weight_attr=paddle.ParamAttr(
name='%s.w_0' % name if name is not None else None,
initializer=init),
bias_attr='%s.b_0' % name if name is not None else None)
def _build_ln(n_in, name):
"""
"""
return nn.LayerNorm(
normalized_shape=n_in,
weight_attr=paddle.ParamAttr(
name='%s_layer_norm_scale' % name if name is not None else None,
initializer=nn.initializer.Constant(1.)),
bias_attr=paddle.ParamAttr(
name='%s_layer_norm_bias' % name if name is not None else None,
initializer=nn.initializer.Constant(0.)))
def append_name(name, postfix):
""" append name with postfix """
if name is None:
ret = None
elif name == '':
ret = postfix
else:
ret = '%s_%s' % (name, postfix)
return ret