-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
442 lines (400 loc) · 19.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# pylint: disable=no-member
import argparse
import os
import sys
import numpy as np
import random
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from data.OxfordVelodyne_datagenerator import RobotCar
from data.NCLT_datagenerator import NCLT
from data.composition import MF
from data.augment import get_augmentations_from_list, Normalize
from models.model import NIDALoc
from models.loss import Criterion
from utils.pose_util import val_translation, val_rotation, val_classification, qexp
from tensorboardX import SummaryWriter
from torch.backends import cudnn
from torch.utils.data import DataLoader
from os import path as osp
from torchstat import stat
from thop import profile
from ptflops import get_model_complexity_info
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
cudnn.enabled = True
parser = argparse.ArgumentParser()
parser.add_argument('--multi_gpus', action='store_true', default=False,
help='if use multi_gpus, default false')
parser.add_argument('--gpu_id', type=int, default=0,
help='gpu id for network, only effective when multi_gpus is false')
parser.add_argument('--batch_size', type=int, default=32,
help='Batch Size during training [default: 80]')
parser.add_argument('--val_batch_size', type=int, default=32,
help='Batch Size during validating [default: 80]')
parser.add_argument('--max_epoch', type=int, default=99,
help='Epoch to run [default: 100]')
parser.add_argument('--init_learning_rate', type=float, default=0.001,
help='Initial learning rate [default: 0.001]')
parser.add_argument("--decay_step", type=float, default=500,
help="decay step for learning rate, default: 1000")
parser.add_argument('--optimizer', default='adam',
help='adam or momentum [default: adam]')
parser.add_argument('--seed', type=int, default=20, metavar='S',
help='random seed (default: 20)')
parser.add_argument('--log_dir', default='NIDALoc/',
help='Log dir [default: log]')
parser.add_argument('--dataset_folder', default='/home/data',
help='Our Dataset Folder')
parser.add_argument('--dataset', default='NCLT',
help='Oxford or NCLT')
parser.add_argument('--num_workers', type=int, default=4,
help='num workers for dataloader, default:4')
parser.add_argument('--num_points', type=int, default=4096,
help='Number of points to downsample model to')
parser.add_argument('--augmentation', type=str, nargs='+', default=[],
choices=['Jitter', 'RotateSmall', 'Scale', 'Shift', 'Rotate1D', 'Rotate3D'],
help='Data augmentation settings to use during training')
parser.add_argument('--upright_axis', type=int, default=2,
help='Will learn invariance along this axis')
parser.add_argument('--num_loc', type=int, default=10,
help='position classification, default: 10')
parser.add_argument('--num_ang', type=int, default=8,
help='orientation classification, default: 10')
parser.add_argument('--skip', type=int, default=10,
help='Number of frames to skip')
parser.add_argument('--steps', type=int, default=5,
help='Number of frames to return on every call')
parser.add_argument('--normalize', action='store_true', default=False,
help='use normalize or not, default not')
parser.add_argument('--real', action='store_true', default=False,
help='if True, load poses from SLAM / integration of VO')
parser.add_argument('--variable_skip', action='store_true', default=False,
help='If True, skip = [1, ..., skip]')
parser.add_argument('--skip_val', action='store_true', default=False,
help='if skip validation during training, default False')
parser.add_argument('--resume_model', type=str, default='',
help='If present, restore checkpoint and resume training')
FLAGS = parser.parse_args()
args = vars(FLAGS)
for (k, v) in args.items():
print('%s: %s' % (str(k), str(v)))
if not os.path.exists(FLAGS.log_dir):
os.makedirs(FLAGS.log_dir)
LOG_FOUT = open(os.path.join(FLAGS.log_dir, 'log.txt'), 'w')
LOG_FOUT.write(str(FLAGS) + '\n')
TOTAL_ITERATIONS = 0
if not FLAGS.multi_gpus:
os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.gpu_id)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
raise ValueError("GPU not found!")
else:
if torch.cuda.is_available():
device = torch.device("cuda")
else:
raise ValueError("GPU not found!")
train_augmentations = get_augmentations_from_list(FLAGS.augmentation, upright_axis=FLAGS.upright_axis)
valid_augmentations = []
if FLAGS.normalize:
if FLAGS.dataset == 'Oxford':
stats_file = osp.join(FLAGS.dataset_folder, FLAGS.dataset, 'stats.txt')
elif FLAGS.dataset == 'NCLT':
stats_file = osp.join(FLAGS.dataset_folder, FLAGS.dataset, 'stats.txt')
else:
raise ValueError("dataset error!")
stats = np.loadtxt(stats_file, dtype=np.float32)
normalize_aug = Normalize(mean=stats[0], std=np.sqrt(stats[1]))
train_augmentations.append(normalize_aug)
valid_augmentations.append(normalize_aug)
train_kwargs = dict(data_path = FLAGS.dataset_folder,
augmentation = train_augmentations,
num_points = FLAGS.num_points,
train = True,
valid = False,
num_loc = FLAGS.num_loc,
num_ang = FLAGS.num_ang)
valid_kwargs = dict(data_path = FLAGS.dataset_folder,
augmentation = valid_augmentations,
num_points = FLAGS.num_points,
train = False,
valid = True,
num_loc = FLAGS.num_loc,
num_ang = FLAGS.num_ang)
pose_stats_file = os.path.join(FLAGS.dataset_folder, FLAGS.dataset, 'pose_stats.txt')
pose_m, pose_s = np.loadtxt(pose_stats_file)
Plus_kwargs = dict(dataset = FLAGS.dataset,
skip = FLAGS.skip,
steps = FLAGS.steps,
variable_skip = FLAGS.variable_skip,
real = FLAGS.real)
train_kwargs = dict(**train_kwargs, **Plus_kwargs)
valid_kwargs = dict(**valid_kwargs, **Plus_kwargs)
train_set = MF(**train_kwargs)
val_set = MF(**valid_kwargs)
train_loader = DataLoader(train_set,
batch_size = FLAGS.batch_size,
shuffle = True,
num_workers = FLAGS.num_workers,
pin_memory = True)
val_loader = DataLoader(val_set,
batch_size = FLAGS.val_batch_size,
shuffle = False,
num_workers = FLAGS.num_workers,
pin_memory = True)
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def train():
global TOTAL_ITERATIONS
setup_seed(FLAGS.seed)
train_writer = SummaryWriter(os.path.join(FLAGS.log_dir, 'train'))
val_writer = SummaryWriter(os.path.join(FLAGS.log_dir, 'valid'))
model = NIDALoc()
loss = Criterion()
model = model.to(device)
loss = loss.to(device)
if FLAGS.optimizer == 'momentum':
optimizer = torch.optim.SGD(model.parameters(), FLAGS.init_learning_rate)
elif FLAGS.optimizer == 'adam':
optimizer = torch.optim.Adam(model.parameters(), FLAGS.init_learning_rate)
else:
optimizer = None
exit(0)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, FLAGS.decay_step, gamma=0.95)
if len(FLAGS.resume_model) > 0:
resume_filename = FLAGS.log_dir + FLAGS.resume_model
print("Resuming From ", resume_filename)
checkpoint = torch.load(resume_filename)
saved_state_dict = checkpoint['state_dict']
starting_epoch = checkpoint['epoch'] + 1
TOTAL_ITERATIONS = starting_epoch * len(train_set)
model.load_state_dict(saved_state_dict)
scheduler.load_state_dict(checkpoint['scheduler'])
else:
starting_epoch = 0
if FLAGS.multi_gpus:
model = nn.DataParallel(model)
LOG_FOUT.write("\n")
LOG_FOUT.flush()
for epoch in range(starting_epoch, FLAGS.max_epoch):
log_string('**** EPOCH %03d ****' % epoch)
sys.stdout.flush()
if not FLAGS.skip_val and epoch % 5 == 1:
valid_one_epoch(model, val_loader, val_writer, device)
train_one_epoch(model, train_loader, scheduler, epoch, train_writer, loss, device)
def train_one_epoch(model, train_loader, scheduler, epoch, train_writer, loss, device):
global TOTAL_ITERATIONS
for _, (train_data, train_pose, train_grid, train_hd) in enumerate(train_loader):
TOTAL_ITERATIONS += 1
pcs_tensor = train_data.to(device, dtype=torch.float32) # [B, T, N, 3]
s = pcs_tensor.size() # B, T, N, 3
pcs_tensor = pcs_tensor.view(-1, *s[2:]) # [B*T, N, 3]
train_pose = train_pose.to(device, dtype=torch.float32) # [B, T, 6]
gt_t = train_pose[..., :3].view(s[0] * s[1], 3) # [B*T, 3]
gt_q = train_pose[..., 3:].view(s[0] * s[1], 3) # [B*T, 3]
gt_grid = train_grid.to(device, dtype=torch.float32).view(s[0] * s[1], 2) # [B*T, 2]
gt_hd = train_hd.to(device, dtype=torch.float32).view(s[0] * s[1]) # [B*T]
# run model
scheduler.optimizer.zero_grad()
pred_t, pred_q, pred_grid, pred_hd = run_model(model, pcs_tensor, validate=False)
train_loss = loss(pred_t, pred_q, pred_grid, pred_hd, gt_t, gt_q, gt_grid, gt_hd)
train_loss.backward(train_loss)
scheduler.optimizer.step()
scheduler.step()
log_string('Loss: %f' % train_loss)
train_writer.add_scalar('Loss', train_loss.cpu().item(), TOTAL_ITERATIONS)
if epoch % 1 == 0:
if isinstance(model, nn.DataParallel):
model_to_save = model.module
else:
model_to_save = model
torch.save({
'epoch': epoch,
'iter': TOTAL_ITERATIONS,
'state_dict': model_to_save.state_dict(),
'scheduler': scheduler.state_dict(),
},
FLAGS.log_dir+'checkpoint_epoch{}.tar'.format(epoch))
print("Model Saved As " + 'checkpoint_epoch{}.tar'.format(epoch))
def valid_one_epoch(model, val_loader, val_writer, device):
gt_translation = np.zeros((len(val_set), 3))
pred_translation = np.zeros((len(val_set), 3))
gt_rotation = np.zeros((len(val_set), 4))
pred_rotation = np.zeros((len(val_set), 4))
gt_grid_cell = np.zeros((len(val_set), 2))
pred_grid_cell = np.zeros((len(val_set), 2))
error_t = np.zeros(len(val_set))
error_q = np.zeros(len(val_set))
error_grid = np.zeros(len(val_set))
correct_hd_results = []
time_results = []
for step, (val_data, val_pose, val_grid, val_hd) in enumerate(val_loader):
start_idx = step * FLAGS.val_batch_size
end_idx = min((step+1)*FLAGS.val_batch_size, len(val_set))
val_pose = val_pose[:, -1, :]
val_grid = val_grid[:, -1, :]
val_hd = val_hd[:, -1]
gt_translation[start_idx:end_idx, :] = val_pose[:, :3].numpy() * pose_s + pose_m
gt_rotation[start_idx:end_idx, :] = np.asarray([qexp(q) for q in val_pose[:, 3:].numpy()])
gt_grid_cell[start_idx:end_idx, :] = val_grid.numpy() * pose_s[:2] + pose_m[:2]
gt_hd = val_hd.to(device, dtype=torch.float32)
pcs_tensor = val_data.to(device)
s = pcs_tensor.size() # B, T, N, 3
pcs_tensor = pcs_tensor.view(-1, *s[2:]) # [B*T, N, 3]
# run model and time eval
start = time.time()
pred_t, pred_q, pred_grid, pred_hd = run_model(model, pcs_tensor, validate=True)
end = time.time()
cost_time = end - start
time_results.append(cost_time)
# last frame
pred_t = pred_t.view(s[0], s[1], 3)
pred_q = pred_q.view(s[0], s[1], 3)
pred_grid = pred_grid.view(s[0], s[1], 2)
pred_hd = pred_hd.view(s[0], s[1], 2)
pred_t = pred_t[:, -1, :]
pred_q = pred_q[:, -1, :]
pred_grid = pred_grid[:, -1, :]
pred_hd = pred_hd[:, -1, :]
# RTE / RRE / Cls
pred_translation[start_idx:end_idx, :] = pred_t.cpu().numpy() * pose_s + pose_m
pred_rotation[start_idx:end_idx, :] = np.asarray([qexp(q) for q in pred_q.cpu().numpy()])
pred_grid_cell[start_idx:end_idx, :] = pred_grid.cpu().numpy() * pose_s[:2] + pose_m[:2]
error_t[start_idx:end_idx] = np.asarray([val_translation(p, q) for p, q in zip(pred_translation[start_idx:end_idx, :], gt_translation[start_idx:end_idx, :])])
error_q[start_idx:end_idx] = np.asarray([val_rotation(p, q) for p, q in zip(pred_rotation[start_idx:end_idx, :], gt_rotation[start_idx:end_idx, :])])
error_grid[start_idx:end_idx] = np.asarray([val_translation(p, q) for p, q in zip(pred_grid_cell[start_idx:end_idx, :], gt_grid_cell[start_idx:end_idx, :])])
pred_hd_cls = val_classification(pred_hd, gt_hd)
correct_hd_results.append(pred_hd_cls.item()/(end_idx - start_idx))
# log
log_string('MeanTE(m): %f' % np.mean(error_t[start_idx:end_idx], axis=0))
log_string('MeanRE(degrees): %f' % np.mean(error_q[start_idx:end_idx], axis=0))
log_string('MeanBO(m): %f' % np.mean(error_grid[start_idx:end_idx], axis=0))
log_string('MedianTE(m): %f' % np.median(error_t[start_idx:end_idx], axis=0))
log_string('MedianRE(degrees): %f' % np.median(error_q[start_idx:end_idx], axis=0))
log_string('MedianBO(m): %f' % np.median(error_grid[start_idx:end_idx], axis=0))
log_string('Cls_hd: %f' % np.mean(correct_hd_results[step]))
mean_time = np.mean(time_results)
mean_ATE = np.mean(error_t)
mean_ARE = np.mean(error_q)
mean_GRID = np.mean(error_grid)
median_ATE = np.median(error_t)
median_ARE = np.median(error_q)
median_GRID = np.median(error_grid)
mean_HD = np.mean(correct_hd_results)
log_string('Mean Cost Time(s): %f' % mean_time)
log_string('Mean Position Error(m): %f' % mean_ATE)
log_string('Mean Orientation Error(degrees): %f' % mean_ARE)
log_string('Mean Boundary Error(m): %f' % mean_GRID)
log_string('Median Position Error(m): %f' % median_ATE)
log_string('Median Orientation Error(degrees): %f' % median_ARE)
log_string('Median Boundary Error(m): %f' % median_GRID)
log_string('Mean HD Acc: %f' % mean_HD)
val_writer.add_scalar('MeanTime', mean_time, TOTAL_ITERATIONS)
val_writer.add_scalar('MeanATE', mean_ATE, TOTAL_ITERATIONS)
val_writer.add_scalar('MeanARE', mean_ARE, TOTAL_ITERATIONS)
val_writer.add_scalar('MeanBOE', mean_GRID, TOTAL_ITERATIONS)
val_writer.add_scalar('MedianATE', median_ATE, TOTAL_ITERATIONS)
val_writer.add_scalar('MedianARE', median_ARE, TOTAL_ITERATIONS)
val_writer.add_scalar('MedianBOE', median_GRID, TOTAL_ITERATIONS)
val_writer.add_scalar('MeanHD', mean_HD, TOTAL_ITERATIONS)
# trajectory
fig = plt.figure()
real_pose = pred_translation - pose_m
gt_pose = gt_translation - pose_m
plt.scatter(gt_pose[:, 1], gt_pose[:, 0], s=3, c='black')
plt.scatter(real_pose[:, 1], real_pose[:, 0], s=3, c='red')
plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.plot(gt_pose[0, 1], gt_pose[0, 0], 'y*', markersize=10)
image_filename = os.path.join(os.path.expanduser(FLAGS.log_dir), '{:s}.png'.format('1_trajectory'))
fig.savefig(image_filename, dpi=200, bbox_inches='tight')
# ground truth
fig = plt.figure()
gt_pose = gt_translation - pose_m
plt.scatter(gt_pose[:, 1], gt_pose[:, 0], s=3, c='black')
plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.plot(gt_pose[0, 1], gt_pose[0, 0], 'y*', markersize=10)
image_filename = os.path.join(os.path.expanduser(FLAGS.log_dir), '{:s}.png'.format('2_gt'))
fig.savefig(image_filename, dpi=200, bbox_inches='tight')
# translation_curve
fig = plt.figure()
threshold_t = np.arange(0, 101, 5)
cumulative_t = []
for i in threshold_t:
t = len(error_t[error_t < i])
p = (t / len(error_t)) * 100
cumulative_t.append(p)
plt.plot(threshold_t, cumulative_t, 'r--o', label='error_t')
plt.legend()
plt.xlabel('Translation Error [m]')
plt.ylabel('Percentage of Point Cloud [%]')
plt.title('Cumulative distributions of the translation errors (m)')
plt.grid(True)
image_filename = os.path.join(os.path.expanduser(FLAGS.log_dir), '{:s}.png'.format('3_curve_t'))
fig.savefig(image_filename, dpi=200, bbox_inches='tight')
# rotation_curve
fig = plt.figure()
threshold_q = np.arange(0, 21, 2.5)
cumulative_q = []
for i in threshold_q:
q = len(error_q[error_q < i])
p = (q / len(error_q)) * 100
cumulative_q.append(p)
plt.plot(threshold_q, cumulative_q, 'b--o', label='error_q')
plt.legend()
plt.xlabel('Rotation Error [degree]')
plt.ylabel('Percentage of Point Cloud [%]')
plt.title('Cumulative distributions of the rotation errors (degree)')
plt.grid(True)
image_filename = os.path.join(os.path.expanduser(FLAGS.log_dir), '{:s}.png'.format('4_curve_r'))
fig.savefig(image_filename, dpi=200, bbox_inches='tight')
# translation_distribution
fig = plt.figure()
t_num = np.arange(len(error_t))
plt.scatter(t_num, error_t, s=1, c='red')
plt.xlabel('Data Num')
plt.ylabel('Error (m)')
image_filename = os.path.join(os.path.expanduser(FLAGS.log_dir), '{:s}.png'.format('5_distribution_t'))
fig.savefig(image_filename, dpi=200, bbox_inches='tight')
# rotation_distribution
fig = plt.figure()
q_num = np.arange(len(error_q))
plt.scatter(q_num, error_q, s=1, c='blue')
plt.xlabel('Data Num')
plt.ylabel('Error (degree)')
image_filename = os.path.join(os.path.expanduser(FLAGS.log_dir), '{:s}.png'.format('6_distribution_q'))
fig.savefig(image_filename, dpi=200, bbox_inches='tight')
# save error and trajectory
error_t_filename = osp.join(FLAGS.log_dir, 'error_t.txt')
error_q_filename = osp.join(FLAGS.log_dir, 'error_q.txt')
pred_t_filename = osp.join(FLAGS.log_dir, 'pred_t.txt')
gt_t_filename = osp.join(FLAGS.log_dir, 'gt_t.txt')
np.savetxt(error_t_filename, error_t, fmt='%8.7f')
np.savetxt(error_q_filename, error_q, fmt='%8.7f')
np.savetxt(pred_t_filename, real_pose, fmt='%8.7f')
np.savetxt(gt_t_filename, gt_pose, fmt='%8.7f')
def run_model(model, PC, validate=False):
if not validate:
model.train()
return model(PC)
else:
with torch.no_grad():
model.eval()
return model(PC)
if __name__ == "__main__":
train()