-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
executable file
·497 lines (449 loc) · 20.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import pdb
import sys
import argparse
import os
import time
import random
import numpy as np
from random import random
import torch
import torch.nn.functional as F
from torch_geometric.loader import DataLoader
from torch_optimizer import swats
import torch_optimizer as optim
from torch.utils.data import random_split, Subset, ConcatDataset
from torch.utils.tensorboard import writer
import src.hyperdataset as hdatasets
import src.hypermodel as hmodels
from src.logger import Logger
from src.util import InversePairs, mle_loss, spearman, dcg_score
#from src.meta import META
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=777, help='seed')
parser.add_argument('--device', type=str, default='cuda:0',help='device')
parser.add_argument('--model', type=str, default='GClassifier',help='which mdoel to use')
parser.add_argument('--batch_size', type=int, default=8,help='train batch size')
parser.add_argument('--batch_step', type=int, default=1,help='how many batches per update')
parser.add_argument('--test_batch_size', type=int, default=8,help='test batch size')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--step_size', type=int, default=50, help='learning rate decay step')
parser.add_argument('--lr_decay', type=float, default=1., help='learning rate decay ratio')
parser.add_argument('--weight_decay', type=float, default=0.0001, help='weight decay')
parser.add_argument('--nhid', type=int, default=16, help='hidden size')
parser.add_argument('--layers',type=int,default=2,help='conv layers')
parser.add_argument('--egnn_layers',type=int,default=3,help='egnn layers')
parser.add_argument('--egnn_nhid',type=int,default=16,help='egnn layers hidden dim')
#parser.add_argument('--pooling_ratio', type=float, default=0.1,help='pooling ratio')
parser.add_argument('--dropout_ratio', type=float, default=0.1,help='dropout ratio')
parser.add_argument('--group', type=int, default=0, help='which data group to use')
parser.add_argument('--tests', type=str, nargs='+',
default=['mgc_des_perf_a', 'mgc_fft_a', 'mgc_matrix_mult_a', 'mgc_matrix_mult_c', 'mgc_superblue14', 'mgc_superblue19'],help='test data')
parser.add_argument('--trains', type=str, nargs='+',
default=['mgc_edit_dist_a', 'mgc_fft_b', 'mgc_matrix_mult_b', 'mgc_pci_bridge32_b', 'mgc_superblue11_a', 'mgc_superblue16_a'],help='train data')
parser.add_argument('--dataset_path', type=str, default='data')
parser.add_argument('--dataset', type=str, default='PlainClusterSet')
parser.add_argument('--epochs', type=int, default=400,help='maximum number of epochs')
parser.add_argument('--patience', type=int, default=400,help='patience for earlystopping')
parser.add_argument('--save_dir', type=str, default='save')
parser.add_argument('--goon', action='store_true',help='continue training')
parser.add_argument('--con', action='store_true',help='continue training')
parser.add_argument('--checkp', type=str, default='test.pth')
parser.add_argument('--pos_encode', type=int, default=4, help='whether use pos encoding on position')
parser.add_argument('--size_encode', type=int, default=0, help='whether use pos encoding on size')
parser.add_argument('--offset_encode', type=int, default=0, help='whether use pos encoding on offset')
parser.add_argument('--design', type=str, default='all',help='whitch design to train')
parser.add_argument('--loss', type=str, default='MAE',help='loss func')
parser.add_argument('--acc', type=str, default='rel',help='loss func')
parser.add_argument('--skip_cnt', action='store_true', default=True ,help='use skip cnt ?')
parser.add_argument('--regresion', action='store_true', help='regression')
parser.add_argument('--classifier', action='store_true', help='classification')
parser.add_argument('--base_model', type=str, default='EGNN',help='which base mdoel to use in classifier')
parser.add_argument('--metric', type=str, default='lambdda',help='which metric to use as lambda, [lambdda (top1 prob), ndcg]')
parser.add_argument('--label', type=list[int],default=[1],help='which label to use, [0~5] = [hpwl, rwl, via, short, score]')
parser.add_argument('--train_ratio', type=float, default=0.8,help='train ratio')
parser.add_argument('--optimizer',type=str,default='Adam')
args = parser.parse_args()
args.betas = [0.005, ]
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
def build_loss(args):
def MAELoss(out,data):
if len(args.label) > 1:
label = torch.tensor(args.label[0]).long().to(data.device)
y = data.y[:, label]
w = data.w[:, label]
return F.l1_loss(out[0].view(-1) * w,y.view(-1) * w)
else:
label = args.label[0]
y = data.y[:, label]
w = data.w[:, label]
return F.l1_loss(out[0].view(-1) * w, y.view(-1) * w)
def MSELoss(out,data):
if len(args.label) > 1:
label = torch.tensor(args.label[0]).long().to(data.device)
y = data.y[:, label]
w = data.w[:, label]
return F.mse_loss(out[0].view(-1) * w, y.view(-1) * w)
else:
label = args.label[0]
y = data.y[:, label]
w = data.w[:, label]
return F.mse_loss(out[0].view(-1) * w,y.view(-1) * w)
def BCELoss(out,data):
if len(args.label) > 1:
label = torch.tensor(args.label[0]).long().to(data.device)
y = data.y[:, label]
w = data.w[:, label]
return F.mse_loss(out[0].view(-1) * w, y.view(-1) * w)
else:
label = args.label[0]
y = data.y[:, label]
w = data.w[:, label]
return F.binary_cross_entropy(target=y.view(-1), input=out[0].view(-1), weight=w)
def MLELoss(out,data):
if len(args.label) > 1:
label = torch.tensor(args.label[0]).long().to(data.device)
y = data.y[:, label]
w = data.w[:, label]
return F.mse_loss(out[0].view(-1) * w, y.view(-1) * w)
else:
label = args.label[0]
y = data.y[:, label]
return mle_loss(y.view(-1), out[0].view(-1))
def SMAELoss(out,data):
if len(args.label) > 1:
label = torch.tensor(args.label[0]).long().to(data.device)
y = data.y[:, label]
w = data.w[:, label]
return F.mse_loss(out[0].view(-1) * w, y.view(-1) * w)
else:
label = args.label[0]
y = data.y[:, label]
w = data.w[:, label]
torch.nn.HuberLoss
return F.smooth_l1_loss(out[0].view(-1) * w, y.view(-1) * w, beta=0.005)
def CMSELoss(out,data):
y = getattr(data,args.label)
return F.l1_loss(out[0],y,reduction='sum')
def CrossEntropyLoss(out,data):
label = args.label[0]
y = data.y[:, label]
index = torch.arange(0, y.shape[0], 2).to(y.device)
y0 = torch.index_select(y, dim=0, index=index)
y1 = torch.index_select(y, dim=0, index=(index+1))
target = ((y0 - y1) >= 0).long()
return F.cross_entropy(out[0], target.view(-1))
def COMBLoss(out,data):
# get label
label = args.label[0]
y = data.y[:, label]
y1 = data.y1[:, label]
y2 = data.y2[:, label]
w = data.w[:, label]
w1 = data.w1[:, label]
w2 = data.w2[:, label]
# get out
index = torch.arange(0, out[0].shape[0], 2).to(y.device)
out1 = torch.index_select(out[0], dim=0, index=index)
out2 = torch.index_select(out[0], dim=0, index=(index+1))
p = torch.sigmoid(out1 - out2)
#
bce_loss = F.binary_cross_entropy(input=p, target=y, weight=w)
mae_loss = F.l1_loss(input=out1 * w1, target=y1 * w1) + F.l1_loss(input=out2 * w2, target=y2 * w2)
return bce_loss + mae_loss
if args.loss == 'MSE':
return MSELoss
elif args.loss == 'CMSE':
return CMSELoss
elif args.loss == 'BCE':
return BCELoss
elif args.loss == 'CROSS':
return CrossEntropyLoss
elif args.loss == 'MLE':
return MLELoss
elif args.loss == 'MAE':
return MAELoss
elif args.loss == 'SMAE':
return SMAELoss
elif args.loss == 'COMB':
return COMBLoss
else:
print('Invalid loss function!')
def build_acc(args):
def RelAcc(out, data):
label = args.label[0]
y = data.y[:, label]
return torch.mean(1-torch.abs((y.view(-1)-out[0].view(-1))/(y.view(-1))))
def CRelAcc(out, data):
y = getattr(data,args.label)
return torch.mean(1-torch.abs((y.view(-1)-out[0].view(-1))/(y.view(-1)+0.00001)))
def SROCC(out, data):
label = args.label[0]
y = data.y[:, label]
return spearman(y.view(-1), out[0].view(-1))
def EqAcc(out, data):
label = args.label[0]
y = data.y[:, label]
index = torch.arange(0, y.shape[0], 2).to(y.device)
y0 = torch.index_select(y, dim=0, index=index)
y1 = torch.index_select(y, dim=0, index=(index+1))
target = ((y0 - y1) >= 0).long()
return torch.eq(torch.argmax(out[0],dim=1).view(-1), target.view(-1)).float().mean()
def BEQAcc(out, data):
label = args.label[0]
y = data.y[:, label]
mask1, mask5, mask0 = (out[0] > 0.5), (out[0] == 0.5), (out[0] < 0.5)
mask = 1. * mask1 + 0.5 * mask5
return torch.eq(mask.view(-1), y.view(-1)).float().mean()
def COMBAcc(out, data):
label = args.label[0]
y1 = data.y1[:, label]
y2 = data.y2[:, label]
y = torch.cat((y1,y2))
index = torch.arange(0, out[0].shape[0], 2).to(y.device)
out1 = torch.index_select(out[0], dim=0, index=index)
out2 = torch.index_select(out[0], dim=0, index=(index+1))
out = torch.cat((out1, out2))
return torch.mean(1-torch.abs((y.view(-1)-out.view(-1))/(y.view(-1))))
if args.acc == 'rel':
return RelAcc
elif args.acc == 'SROCC':
return SROCC
elif args.acc == 'Crel':
return CRelAcc
elif args.acc == 'eq':
return EqAcc
elif args.acc == 'BEQ':
return BEQAcc
elif args.acc == 'COMB':
return COMBAcc
else:
print('Invalid acc function!')
assert(False)
def build_loader(design,train_ratio=0.8):
MySet = getattr(hdatasets,args.dataset)
dataset = MySet(args.dataset_path, mode=args.model, test_files=args.tests, train_files=args.trains, args=args)
if args.model != 'CNN' and args.model != 'Classifier' and args.model != 'RClassifier':
args.num_node_features = dataset.num_node_features
args.num_edge_features = dataset.num_edge_features
args.num_pin_features = dataset.num_pin_features
if args.model == 'EHGNN':
args.num_pos_features = dataset.num_pos_features
if design == 'all':
print(dataset.train_file_names)
print(dataset.test_file_names)
train_designs = dataset.train_file_names
test_designs = dataset.test_file_names
train_sets = []
test_sets = []
test_loader = {}
num_training = 0
num_testing = 0
for design in train_designs:
train_sets.append(Subset(dataset,range(dataset.ptr[design],
dataset.ptr[design] + dataset.file_num[design])))
num_training += dataset.file_num[design]
for design in test_designs:
test_set = Subset(dataset,range(dataset.ptr[design],
dataset.ptr[design] + dataset.file_num[design]))
num_testing += dataset.file_num[design]
test_loader[design] = DataLoader(test_set,batch_size=args.test_batch_size,shuffle=True)
train_set = ConcatDataset(train_sets)
print("Total %d training data, %d testing data."%(num_training,num_testing),flush=True)
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True)
else:
num_training = int(dataset.file_num[design] * train_ratio)
num_testing = dataset.file_num[design] - num_training
test_loader = {}
design_set = Subset(dataset,range(dataset.ptr[design],
dataset.ptr[design] + dataset.file_num[design]))
train_set, test_set = random_split(design_set,[num_training,num_testing])
print("Total %d training data, %d testing data."%(num_training,num_testing),flush=True)
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True)
test_loader[design] = DataLoader(test_set,batch_size=args.test_batch_size,shuffle=False)
return dataset, train_loader, test_loader
def build_model():
Model = getattr(hmodels,args.model)
model = Model(args).to(args.device)
print(model)
if args.optimizer == 'RAdam':
optimizer = optim.RAdam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer == 'SWATS':
optimizer = swats.SWATS(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer == 'Ranger':
optimizer = optim.Ranger(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, momentum=0.9)
elif args.optimizer == 'Nesterov':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, nesterov=True, momentum=0.9)
else:
optimizer = getattr(torch.optim,args.optimizer)(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
schedule = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.lr_decay)
#optimizer.zero_grad()
return model, optimizer, schedule
def build_log():
# make save dir
st = time.strftime("%b:%d:%X",time.localtime())
args.save_dir = os.path.join(args.save_dir,'{}_{}_{}_{}'.format(args.model,args.label,args.group,st))
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# rederict to save dir
sys.stdout = Logger(path=args.save_dir)
# print args
print(args)
# save paths
best_model_path = os.path.join(args.save_dir,'best.pth'.format(st))
last_model_path = os.path.join(args.save_dir,'last.pth'.format(st))
# tensor board logger
logger = writer.SummaryWriter(args.save_dir)
return best_model_path, last_model_path, logger
# preparing
torch.set_num_threads(16)
# choose data group
if args.group == 1:
tmp = args.tests
args.tests = args.trains
args.trains = tmp
if args.model == 'Classifier' or args.model == 'GClassifier':
args.loss = 'BCE'
args.acc = 'BEQ'
if args.model == 'RClassifier':
args.loss = 'COMB'
args.acc = 'COMB'
args.label = [int(i) for i in args.label]
set_seed(args.seed)
# build up
best_model_path, last_model_path, logger = build_log()
print('loading dataset ...')
dataset, train_loader, test_loader = build_loader(args.design, args.train_ratio)
model, optimizer, schedule = build_model()
criterion = build_loss(args)
accuracy = build_acc(args)
test_designs = dataset.test_file_names
start = 0
min_loss = 1e10
min_train_loss = 1e10
min_err = 1e10
patience = 0
def test(model,loader):
with torch.no_grad():
model.eval()
lenth = len(loader)# if epoch % 5 == 0 else int(len(loader)/5)
maes = []
accs = []
ipes = []
for i,label in enumerate(args.label):
correct = 0.
loss = 0.
reals = []
preds = []
for i, data in enumerate(loader):
if i >= lenth : break
data = data.to(args.device)
out = model(data).view(-1)
y = data.y[:, label].view(-1)
preds.extend(out.detach().cpu().numpy().tolist())
reals.extend(data.y[:, label].cpu().numpy().tolist())
correct += torch.mean(torch.abs((y-out)/y)).item()
loss += F.l1_loss(out, y).item()
# rank loss
Rp = np.argsort(preds)
Rr = np.argsort(np.array(reals)[Rp])
rankacc = InversePairs(Rr.tolist()) / (len(reals)**2 - len(reals)) * 2
#print('[{}]MAE=\t{:4f}\tMRE={:4f}\tIPE={:4f}'.format(label,loss/len(loader),correct/len(loader),rankacc),end='\t')
maes.append(loss/lenth)
accs.append(correct/lenth)
ipes.append(rankacc)
return np.mean(maes), np.mean(accs), np.mean(ipes)
def test_class(model,loader):
tmp_mode = dataset.mode
dataset.mode = 'CNN'
with torch.no_grad():
model.eval()
lenth = len(loader)# if epoch % 5 == 0 else int(len(loader)/5)
for i,label in enumerate(args.label):
reals = []
preds = []
for i, data in enumerate(loader):
if i >= lenth : break
data = data.to(args.device)
out = model.predict(data).view(-1)
preds.extend(out.view(-1).detach().cpu().numpy().tolist())
reals.extend(data.y[:, label].cpu().numpy().tolist())
# rank loss
reals = np.array(reals)
preds = np.array(preds)
Rp = np.argsort(preds)
Rr = np.argsort(np.array(reals)[Rp])
rankacc = InversePairs(Rr.tolist()) / (len(reals)**2 - len(reals)) * 2
dcg_s = dcg_score(input=preds, target=reals)
dataset.mode = tmp_mode
return 0, dcg_s, rankacc
def test_design(model,design, test_loader):
if(args.model == 'Classifier' or args.model == 'GClassifier' or args.model=='RClassifier'):
return test_class(model, test_loader[design])
return test(model, test_loader[design])
if args.goon:
checkp = torch.load(args.checkp)
model.load_state_dict(checkp['model'])
print('load model from {}, saved at epoch {}'.format(args.checkp,start - 1))
if args.con:
optimizer.load_state_dict(checkp['optimizer'])
minn_loss = 10000
minn_errr = 10000
for epoch in range(start, args.epochs):
model.train()
tt = time.time()
Ave_loss = 0.
Ave_cor = 0.
for i, data in enumerate(train_loader):
data = data.to(args.device)
out = [model(data)]
loss = criterion(out, data) / args.batch_step
loss.backward()
if (i+1) % args.batch_step == 0:
optimizer.step()
optimizer.zero_grad()
with torch.no_grad():
Ave_loss += loss.mean().item()
Ave_cor += accuracy(out,data).item()
if optimizer.param_groups[0]['lr'] > args.lr / 100:
schedule.step()
val_losses = []
rank_errs = []
print("[Epoch\t{}]\tTrain loss:\t{:.4f}\tTrain acc:\t{:.4f}".format(
epoch, Ave_loss / len(train_loader) * args.batch_step,
Ave_cor / len(train_loader)), flush=True,end='\t')
for design in test_designs:
_, val_loss, rank_err = test_design(model, design, test_loader)
val_losses.append(val_loss)
rank_errs.append(rank_err)
mean_val_loss = np.mean(val_losses)
mean_rank_err = np.mean(rank_errs)
print("{} mre:\t{:.4f}\t{} ipe:\t{:.4f}\tTime:{:.2f}\tlr:{:.5f}".format(
'Test',
mean_val_loss,
'Test',
mean_rank_err,
time.time() - tt,
optimizer.param_groups[0]['lr']))
logger.add_scalar('train loss', Ave_loss / len(train_loader), i)
logger.add_scalar('train acc', Ave_cor / len(train_loader), i)
logger.add_scalar('test mre', mean_val_loss, i)
logger.add_scalar('test rank err', mean_rank_err, i)
if mean_val_loss < minn_loss:
minn_loss = mean_val_loss
state = {'model': model.state_dict(), 'epoch': epoch , 'val_loss' : mean_val_loss, 'rank_err' : mean_rank_err}
print('model saved {} {}'.format(mean_val_loss, mean_rank_err))
torch.save(state, best_model_path + '.loss')
if mean_rank_err < minn_errr:
minn_errr = mean_rank_err
state = {'model': model.state_dict(), 'epoch': epoch , 'val_loss' : mean_val_loss, 'rank_err' : mean_rank_err}
print('model saved {} {}'.format(mean_val_loss, mean_rank_err))
torch.save(state, best_model_path + '.err')
state = {'model': model.state_dict(), 'val_loss' : mean_val_loss, 'rank_err' : mean_rank_err}
torch.save(state, last_model_path)