-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathall_utils.py
396 lines (328 loc) · 13.7 KB
/
all_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import os
import numpy as np
import random
from collections import OrderedDict
import time
from collections import OrderedDict
from collections import defaultdict
from collections import deque
import datetime
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def setup_seed(seed, cuda_deterministic=True):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else: # faster, less reproducible
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def load_state_dict(model,
state_dict,
prefix='',
ignore_missing="relative_position_index"):
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(state_dict, prefix, local_metadata, True,
missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
load(model, prefix=prefix)
warn_missing_keys = []
ignore_missing_keys = []
for key in missing_keys:
keep_flag = True
for ignore_key in ignore_missing.split('|'):
if ignore_key in key:
keep_flag = False
break
if keep_flag:
warn_missing_keys.append(key)
else:
ignore_missing_keys.append(key)
missing_keys = warn_missing_keys
if len(missing_keys) > 0:
print("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
print("Weights from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(ignore_missing_keys) > 0:
print(
"Ignored weights of {} not initialized from pretrained model: {}".
format(model.__class__.__name__, ignore_missing_keys))
if len(error_msgs) > 0:
print('\n'.join(error_msgs))
def load_finetune_checkpoint(args, video_model):
checkpoint = torch.load(args.finetune, map_location='cpu')
print("Load ckpt from %s" % args.finetune)
checkpoint_model = None
for model_key in args.model_key.split('|'):
if model_key in checkpoint:
checkpoint_model = checkpoint[model_key]
print("Load state_dict by model_key = %s" % model_key)
break
if checkpoint_model is None:
checkpoint_model = checkpoint
if args.model_name == 'videomae_v1' or args.model_name == 'videomae_v2':
# videomae check
for old_key in list(checkpoint_model.keys()):
if old_key.startswith('_orig_mod.'):
print("if old_key.startswith('_orig_mod.'):")
new_key = old_key[10:]
checkpoint_model[new_key] = checkpoint_model.pop(old_key)
all_keys = list(checkpoint_model.keys())
new_dict = OrderedDict()
for key in all_keys:
if key.startswith('backbone.'):
new_dict[key[9:]] = checkpoint_model[key]
elif key.startswith('encoder.'):
new_dict[key[8:]] = checkpoint_model[key]
else:
new_dict[key] = checkpoint_model[key]
checkpoint_model = new_dict
if args.model_name == 'viclip':
all_keys = list(checkpoint_model.keys())
vision_dict = OrderedDict()
tex_dict = OrderedDict()
for key in all_keys:
if key.startswith('vision_encoder.'):
vision_dict[key[15:]] = checkpoint_model[key]
elif key.startswith('text_encoder.'):
tex_dict[key[13:]] = checkpoint_model[key]
else:
continue
checkpoint_model = vision_dict
if 'pos_embed' in checkpoint_model:
print("'pos_embed' in checkpoint_model")
if args.model_name == 'viclip':
def inflate_weight(weight_2d, time_dim, center=True):
print('Init center: {center}')
if center:
weight_3d = torch.zeros(*weight_2d.shape)
weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
middle_idx = time_dim // 2
weight_3d[:, :, middle_idx, :, :] = weight_2d
else:
weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
weight_3d = weight_3d / time_dim
return weight_3d
state_dict = checkpoint_model
state_dict_3d = video_model.state_dict()
for k in state_dict.keys():
if k in state_dict_3d.keys() and state_dict[k].shape != state_dict_3d[k].shape:
if len(state_dict_3d[k].shape) <= 2:
print('Ignore: {k}')
continue
print('Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}')
time_dim = state_dict_3d[k].shape[2]
state_dict[k] = inflate_weight(state_dict[k], time_dim, center=True)
pos_embed_checkpoint = state_dict['positional_embedding']
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = (args.input_size // args.patch_size) ** 2
orig_size = int((pos_embed_checkpoint.shape[-2] - 1) ** 0.5)
new_size = int(num_patches ** 0.5)
if orig_size != new_size:
print('Pos_emb from {orig_size} to {new_size}')
extra_tokens = pos_embed_checkpoint[:1]
pos_tokens = pos_embed_checkpoint[1:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(0, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=0)
state_dict['positional_embedding'] = new_pos_embed
checkpoint_model = state_dict
load_state_dict(video_model, checkpoint_model)
return video_model
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total],
dtype=torch.float64,
device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def min(self):
return min(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
min=self.min,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
self.step_time_start = 0
self.init = False
self.tic = 0
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append("{}: {}".format(name, str(meter)))
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None,
world_size=None, batch_size=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f} ({min:.4f} -- {max:.4f})')
data_time = SmoothedValue(fmt='{avg:.4f} ({min:.4f} -- {max:.4f})')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
log_msg = [
header, '[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}']
if (world_size is not None) and (batch_size is not None):
log_msg.append('video/s/gpu: {qps_v1}')
log_msg.append('video/s: {qps_v2}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
if self.init:
if (world_size is not None) and (batch_size is not None):
try:
speed = print_freq * batch_size / (time.time() - self.tic)
self.tic = time.time()
speed_total = speed * world_size
except ZeroDivisionError:
speed = float("inf")
speed_total = float("inf")
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if (world_size is not None) and (batch_size is not None):
speed = "{:.4f}".format(speed)
speed_total = "{:.4f}".format(speed_total)
print(log_msg.format(i, len(iterable), eta=eta_string, meters=str(self),
time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB,
qps_v1=str(speed), qps_v2=str(speed_total)))
else:
print(
log_msg.format(i, len(iterable), eta=eta_string, meters=str(self),
time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB))
else:
self.init = True
self.tic = time.time()
self.step_time_start = time.time()
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(header, total_time_str, total_time / len(iterable)))