-
Notifications
You must be signed in to change notification settings - Fork 228
/
Copy path50_DailyPredictorPorts.R
307 lines (240 loc) · 8.36 KB
/
50_DailyPredictorPorts.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Note: daily portfolios currently (2021 04) do not aggregate up to monthly
# because the daily portfolios recalculate stock weights (equal or value-weighting)
# every day while the monthly portfolios recalculate stock weights every month.
# Note: monthly portfolios are not screened at all for minimum number of stocks
# and instead, we store Nstocks, and then screen for Nstocks when we do summary stats
# However, to keep the daily portfolios data of a manageable size
# we do not store Nlong and Nshort, and instead impose the screen at the portfolio
# level.
# takes about 1.5 hours per implementation, or about 10 hours total
### ENVIRONMENT AND DATA ####
start_time = Sys.time()
# minimum number of stocks in a portfolio
# for now set to 1 (2021 04), matching baseline
# setting to 20 removes IO_ShortInterest portfolios
Nstocksmin = 1
### load crsp returns
crspinfo = read.fst(
paste0(pathProject,'Portfolios/Data/Intermediate/crspminfo.fst')
) %>% # me, screens,
setDT()
crspret = read.fst(
paste0(pathProject,'Portfolios/Data/Intermediate/crspdret.fst')
) %>% # returns
setDT()
### SET UP PATHS
# since no other files use these paths, they don't go in 00_Settings*.R
pathDataDaily = paste0(pathProject, 'Portfolios/Data/DailyPortfolios/')
pathDataDailyBase = paste0(pathDataDaily, 'Predictor/')
pathDataDailyBaseVW = paste0(pathDataDaily, 'PredictorVW/')
pathDataDailyDecile = paste0(pathDataDaily, 'CtsPredictorDecile/')
pathDataDailyDecileVW = paste0(pathDataDaily, 'CtsPredictorDecileVW/')
pathDataDailyQuintile = paste0(pathDataDaily, 'CtsPredictorQuintile/')
pathDataDailyQuintileVW = paste0(pathDataDaily, 'CtsPredictorQuintileVW/')
dir.create(pathDataDaily)
dir.create(pathDataDailyBase)
dir.create(pathDataDailyBaseVW)
dir.create(pathDataDailyDecile)
dir.create(pathDataDailyDecileVW)
dir.create(pathDataDailyQuintile)
dir.create(pathDataDailyQuintileVW)
# since no other script uses lme4, it should go here.
install.packages(setdiff(c('lme4'), rownames(installed.packages())))
library(lme4)
### SELECT SIGNALS
strategylist0 = alldocumentation %>% filter(Cat.Signal == 'Predictor')
strategylist0 = ifquickrun()
strategylistcts = strategylist0 %>% filter(Cat.Form == 'continuous')
### BASELINE ####
## BASELINE
print('50_DailyPredictorPorts.R: predictor baseline strats')
port = loop_over_strategies(
strategylist0
, saveportcsv = T
, saveportpath = pathDataDailyBase
, saveportNmin = Nstocksmin
, passive_gain = T
)
## BASELINE
print('50_DailyPredictorPorts.R: predictor baseline VW')
port = loop_over_strategies(
strategylist0 %>% mutate(sweight = 'VW' )
, saveportcsv = T
, saveportpath = pathDataDailyBaseVW
, saveportNmin = Nstocksmin
, passive_gain = T
)
Sys.time()
### DECILES ####
## FORCE DECILES
print ('50_DailyPredictorPorts.R: predictor force decile strats')
port = loop_over_strategies(
strategylistcts %>% mutate(q_cut = 0.1)
, saveportcsv = T
, saveportpath = pathDataDailyDecile
, saveportNmin = Nstocksmin
, passive_gain = T
)
## FORCE DECILES AND VW
print ('50_DailyPredictorPorts.R: predictor force decile and VW strats')
port = loop_over_strategies(
strategylistcts %>% mutate(q_cut = 0.1, sweight = 'VW')
, saveportcsv = T
, saveportpath = pathDataDailyDecileVW
, saveportNmin = Nstocksmin
, passive_gain = T
)
Sys.time()
### QUINTILES ####
## FORCE QUINTILES
print ('50_DailyPredictorPorts.R: predictor force quint strats')
port = loop_over_strategies(
strategylistcts %>% mutate(q_cut = 0.2)
, saveportcsv = T
, saveportpath = pathDataDailyQuintile
, saveportNmin = Nstocksmin
, passive_gain = T
)
## FORCE QUINTILES AND VW
print ('50_DailyPredictorPorts.R: predictor force quint and VW strats')
port = loop_over_strategies(
strategylistcts %>% mutate(q_cut = 0.2, sweight = 'VW')
, saveportcsv = T
, saveportpath = pathDataDailyQuintileVW
, saveportNmin = Nstocksmin
, passive_gain = T
)
print('50_DailyPredictorPorts.R done!')
end_time = Sys.time()
print('start time, end time = ')
print(start_time)
print(end_time)
# CHECK CSVS ####
# this creates DailyPortSummary.xlsx
### FUNCTION FOR CHECKING A WHOLE FOLDER OF DAILY RETURNS
checkdir = function(dircurr){
sumsignal = tibble()
for (signalcurr in csvlist$signalname){
retd = fread(paste0(pathDataDaily,dircurr,'/',signalcurr,'_ret.csv')) %>%
gather(port,'ret',-date) %>%
filter(!is.na(ret))
tempstat = retd %>% group_by(port) %>%
summarize(
nobs_years = n()/250
, rbar_monthly = mean(ret,na.rm=T)*20
) %>%
mutate(signalname = signalcurr)
sumsignal = rbind(sumsignal,tempstat)
}
sumdir = sumsignal %>% group_by(port) %>%
summarize(
n_distinct(signalname)
,mean(nobs_years)
,mean(rbar_monthly)
) %>%
mutate(implementation = dircurr)
} # end function checkdir
print(paste0('Checking on Daily Port stats ', Sys.time()))
dirlist = list.dirs(pathDataDaily, full.names=F)
dirlist = dirlist[dirlist != '']
### check for completeness of daily portfolio csvs and summary stats
sumdaily = tibble()
for (dircurr in dirlist){
print(paste0('checking on ', dircurr))
csvlist = list.files(paste0(pathDataDaily,dircurr,'/' )) %>%
as_tibble() %>%
transmute(
signalname = str_remove(value, '_ret.csv')
, incsv = 1
)
## check for mismatches in signal lists
if (substr(dircurr,1,3) == 'Cts'){
doclist = strategylistcts %>% select(signalname) %>% mutate(indoc = 1)
} else {
doclist = strategylist0 %>% select(signalname) %>% mutate(indoc = 1)
} # substr(dircurr,1,3)
mismatch = full_join(doclist, csvlist) %>%
filter(is.na(indoc) | is.na(incsv))
if (dim(mismatch)[1]>0){
print(paste0('Warning: mismatch between signal docs and csvs for '))
print(paste0(pathDataDaily,dircurr,'/' ))
print(mismatch)
} # if there's a mismatch
## check summary stats
sumdir = checkdir(dircurr)
print(paste0('Summary of ', dircurr))
print(sumdir)
sumdaily = rbind(sumdaily,sumdir)
} # for dircurr
### check timing of daily predictor ports (base) with monthly returns
portmonthly = fread(paste0(pathDataPortfolios, 'PredictorPortsFull.csv')) %>%
transmute(signalname, port, datem = as.Date(date), retm = ret)
dircurr = 'Predictor'
csvlist = list.files(paste0(pathDataDaily,dircurr,'/' )) %>%
as_tibble() %>%
transmute(
signalname = str_remove(value, '_ret.csv')
, incsv = 1
)
signallist = csvlist$signalname
print('checking daily vs monthly return timing')
reg_retm_retmagg = tibble()
for (signalcurr in signallist){
print(signalcurr)
# read daily
temp = fread(paste0(pathDataDaily,dircurr,'/',signalcurr,'_ret.csv'))
if (dim(temp)[1]>0){
# aggregate to monthly
datd = temp %>%
gather(port,'ret',-date) %>%
mutate(port = substr(port, 5,6)) %>%
filter(!is.na(ret)) %>%
mutate(datem = ceiling_date(date, 'month') - days(1)) %>%
group_by(datem, port) %>%
summarize(retm_agg = 100*(prod(1+ret/100)-1))
datboth = portmonthly %>%
filter(signalname == signalcurr) %>%
left_join(datd, by=c('port','datem')) %>%
filter(!is.na(retm_agg))
# remove port if too few observations
temp = datboth %>% group_by(port) %>% summarize(nobs = sum(!is.na(retm))) %>%
filter(nobs>10)
datboth = datboth %>% filter(port %in% temp$port)
# regress monthly on daily aggregated to monthly
temp = lmList(retm~retm_agg|port,data=datboth)
reg_curr = tibble(
signalname = signalcurr
, port = rownames(coef(temp))
, intercept = coef(temp)[,1]
, slope = coef(temp)[,2]
, rsq = summary(temp)$r.squared
)
} else {
# here the return file is empty, probably because not enough stocks in the portfolio
reg_curr[] = NA
reg_curr = reg_curr[1,] %>% mutate(signalname = signalcurr)
}
# append
reg_retm_retmagg = rbind(reg_retm_retmagg, reg_curr)
}
# summarize regressions
reg_sum = reg_retm_retmagg %>%
group_by(port) %>%
filter(!is.na(slope)) %>%
summarize(
quantile(slope, 0.1)
, quantile(slope, 0.5)
, quantile(rsq, 0.1)
, quantile(rsq, 0.5)
)
### output
write_xlsx(
list(
sumstats = sumdaily %>%
select(implementation,everything()) %>%
arrange(implementation,port)
, timingcheck = reg_sum
)
, paste0(pathDataDaily, 'DailyPortSummary.xlsx')
)
print(paste0('Done: Checking on Daily Port stats ', Sys.time()))