-
Notifications
You must be signed in to change notification settings - Fork 228
/
Copy path32_Predictor2x3Ports.R
206 lines (174 loc) · 5.49 KB
/
32_Predictor2x3Ports.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# For making FF1993 style factors from individual csvs on gdrive
# Andrew 2021 05
# Made into loop 2022 03
# FF1993 style is based on WRDS:
# https://wrds-www.wharton.upenn.edu/pages/support/applications/risk-factors-and-industry-benchmarks/fama-french-factors/
# ENVIRONMENT AND DATA ====
crspinfo = read.fst(
paste0(pathProject,'Portfolios/Data/Intermediate/crspminfo.fst')
) %>% # me, screens,
setDT()
crspret = read.fst(
paste0(pathProject,'Portfolios/Data/Intermediate/crspmret.fst')
) %>% # returns
setDT()
# SELECT SIGNALS
strategylist0 <- alldocumentation %>% filter(Cat.Signal == "Predictor") %>%
filter(Cat.Form == 'continuous')
strategylist <- ifquickrun()
# FUNCTION FOR CONVERTING SIGNALNAME TO 2X3 PORTS ====
# analogous to signalname_to_ports in 01_PortFolioFunction.R
signalname_to_2x3 = function(signalname){
# Import signal and sign
signal = import_signal(signalname, NA, strategylist$Sign[s])
# ASSIGN TO 2X3 PORTFOLIOS
# Keep value of signal corresponding to June.
# Full join to keep as many market equity observations
# as possible (FF1993, page 8)
signaljune = signal %>%
filter(yyyymm %% 100 == 6)
# For NYSE subset, compute signal quantiles for high and low
# as well as median ME. FF93 is unclear about the shrcd screen
# here, but WRDS does it
nysebreaks = signaljune %>%
filter(exchcd == 1, shrcd %in% c(10, 11)) %>%
group_by(yyyymm) %>%
summarise(
qsignal_l = quantile(signal, 0.3, na.rm = T)
, qsignal_h = quantile(signal, 0.7, na.rm = T)
, qme_mid = quantile(me, 0.5, na.rm = T)
)
# Only exchcd in (1,2,3), shrcd in (10,11), (FF1993 p8-9)
# We already exclude negative BE
port6 = signaljune %>%
filter(
exchcd %in% c(1, 2, 3)
, shrcd %in% c(10, 11)
) %>%
left_join(nysebreaks, by = c('yyyymm')) %>%
mutate(
q_signal = case_when(
signal <= qsignal_l ~ 'L'
, signal <= qsignal_h ~ 'M'
, signal > qsignal_h ~ 'H'
)
, q_me = case_when(
me <= qme_mid ~ 'S'
, me > qme_mid ~ 'B'
)
, port6 = paste0(q_me, q_signal)
) %>%
select(
permno, yyyymm, port6, signal
)
# FIND MONTHLY FACTOR RETURNS
# Find VW returns, signal lag, and number of firms
# for a given portfolio
port6ret = crspret %>%
select(permno, date, yyyymm, ret, melag) %>%
left_join(port6, by = c('permno', 'yyyymm')) %>%
# Fill and lag
group_by(permno) %>%
arrange(permno, date) %>%
fill(port6) %>%
fill(signal) %>%
mutate(
port6_lag = lag(port6)
, signal_lag = lag(signal)
) %>%
filter(!is.na(melag)) %>%
# Find value-weighted returns and signal by port6_lag month
group_by(port6_lag, date) %>%
summarize(
ret_vw = weighted.mean(ret, melag, na.rm = TRUE)
, signallag = weighted.mean(signal_lag, melag, na.rm = TRUE)
, n_firms = n()
) %>%
ungroup() %>%
# Organize and mutate columns
rename(
port = port6_lag
, ret = ret_vw
, Nlong = n_firms
) %>%
mutate(
signalname = !!signalname
, Nshort = 0L
) %>%
filter(port %in% c("SL", "SM", "SH", "BL", "BM", "BH")) %>%
select(signalname, port, date, ret, signallag, Nlong, Nshort)
# Equal-weight extreme portfolios to make FF1993-style factor
portls_ret = port6ret[,c("port", "date", "ret")] %>%
pivot_wider(
names_from = port, values_from = ret
) %>%
mutate(
ret = 0.5*(SH + BH) - 0.5*(SL + BL)
) %>%
select(date, ret)
# Get number of firms in long-short stocks
portls_N = port6ret[,c("port", "date", "Nlong")] %>%
pivot_wider(
names_from = port, values_from = Nlong
) %>%
mutate(
Nlong = SH + BH
, Nshort = SL + BL
) %>%
select(date, Nlong, Nshort)
# merge returns with number of firms and fill in LS info
portls <- merge(portls_ret, portls_N, by = "date") %>%
mutate(
signalname = !!signalname
, port = "LS"
, signallag = NA
, Nshort = if_else(is.na(ret), NA_integer_, Nshort)
, Nlong = if_else(is.na(ret), NA_integer_, Nlong)
) %>%
select(signalname, port, date, ret, signallag, Nlong, Nshort)
# Append LS portfolios to 2x3 portfolios dataframe and sort
port <- rbind(port6ret, portls) %>%
mutate(
port = factor(
port,
levels = c("SL", "SM", "SH", "BL", "BM", "BH", "LS")
)
) %>%
arrange(port, date)
} # end signalname_to_2x3
# LOOP OVER SIGNALS ====
num_signals = nrow(strategylist)
# Initialize location in memory to store results
allport = list()
# Loop over the signals
for(s in 1:num_signals){
# Get signal name
signalname = strategylist$signalname[s]
print(paste0("Processing Signal No. ", s, " ===> ", signalname))
tempport = tryCatch(
{
expr = signalname_to_2x3(
signalname = strategylist$signalname[s]
)
}
, error = function(e){
print('error in signalname_to_2x3, returning df with NA')
data.frame(
matrix(ncol = dim(allport[[s-1]])[2], nrow = 1)
)
}
) # tryCatch
# add column names if signalname_to_2x3 failed
if (is.na(tempport[1,1])){
colnames(tempport) = colnames(allport[[1]]) # assume strat 1 worked ok
tempport$signalname = strategylist$signalname[1]
}
allport[[s]] = tempport
} # for s in 1:num_signals
port = do.call(rbind.data.frame, allport)
# WRITE TO DISK ====
writestandard(
port,
pathDataPortfolios,
"PredictorAltPorts_FF93style.csv"
)