-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackend_t5.py
126 lines (97 loc) · 4.21 KB
/
backend_t5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import transformers
import re
import numpy as np
from mosec import Server, Worker, get_logger
from mosec.mixin import MsgpackMixin
def tokenize_and_mask(text, span_length=2, pct=0.1, buffer_size=1):
tokens = text.split(' ')
mask_string = '<<<mask>>>'
n_spans = pct * len(tokens) / (span_length + buffer_size * 2)
n_spans = int(n_spans)
n_masks = 0
while n_masks < n_spans:
start = np.random.randint(0, len(tokens) - span_length)
end = start + span_length
search_start = max(0, start - buffer_size)
search_end = min(len(tokens), end + buffer_size)
if mask_string not in tokens[search_start:search_end]:
tokens[start:end] = [mask_string]
n_masks += 1
# replace each occurrence of mask_string with <extra_id_NUM>, where NUM increments
num_filled = 0
for idx, token in enumerate(tokens):
if token == mask_string:
tokens[idx] = f'<extra_id_{num_filled}>'
num_filled += 1
assert num_filled == n_masks, f"num_filled {num_filled} != n_masks {n_masks}"
text = ' '.join(tokens)
return text
def count_masks(texts):
return [
len([x for x in text.split() if x.startswith("<extra_id_")])
for text in texts
]
def replace_masks(texts, tokenizer, model, mask_top_p=0.95, DEVICE='cuda:0'):
n_expected = count_masks(texts)
stop_id = tokenizer.encode(f"<extra_id_{max(n_expected)}>")[0]
tokens = tokenizer(texts, return_tensors="pt", padding=True).to(DEVICE)
outputs = model.generate(**tokens,
max_length=512,
do_sample=True,
top_p=mask_top_p,
num_return_sequences=1,
eos_token_id=stop_id)
return tokenizer.batch_decode(outputs, skip_special_tokens=False)
def extract_fills(texts):
# remove <pad> from beginning of each text
texts = [x.replace("<pad>", "").replace("</s>", "").strip() for x in texts]
# return the text in between each matched mask token
pattern = re.compile(r"<extra_id_\d+>")
extracted_fills = [pattern.split(x)[1:-1] for x in texts]
# remove whitespace around each fill
extracted_fills = [[y.strip() for y in x] for x in extracted_fills]
return extracted_fills
def apply_extracted_fills(masked_texts, extracted_fills):
# split masked text into tokens, only splitting on spaces (not newlines)
tokens = [x.split(' ') for x in masked_texts]
n_expected = count_masks(masked_texts)
# replace each mask token with the corresponding fill
for idx, (text, fills,
n) in enumerate(zip(tokens, extracted_fills, n_expected)):
if len(fills) < n:
tokens[idx] = []
else:
for fill_idx in range(n):
text[text.index(f"<extra_id_{fill_idx}>")] = fills[fill_idx]
# join tokens back into text
texts = [" ".join(x) for x in tokens]
return texts
def perturb_texts(text, tokenizer, model, ptb_nums, span_length=2, pct=0.3):
texts = [text for i in range(0, ptb_nums)]
masked_texts = [tokenize_and_mask(x, span_length, pct) for x in texts]
raw_fills = replace_masks(masked_texts, tokenizer, model)
extracted_fills = extract_fills(raw_fills)
perturbed_texts = apply_extracted_fills(masked_texts, extracted_fills)
perturbed_texts = [text for text in perturbed_texts if text != '']
return perturbed_texts
class T5(MsgpackMixin, Worker):
def __init__(self):
"""Init the model for inference."""
self.device = 'cuda'
self.base_tokenizer = transformers.AutoTokenizer.from_pretrained(
't5-3b')
self.base_model = transformers.AutoModelForSeq2SeqLM.from_pretrained(
't5-3b')
self.base_model.to(self.device)
def forward(self, data):
"""Override the forward process."""
"""Use T5 to generate multiple rebuild texts """
data = data['text']
generated_texts = []
generated_texts = generated_texts + perturb_texts(
data, self.base_tokenizer, self.base_model, ptb_nums=5)
return generated_texts
# if __name__ == "__main__":
# server = Server()
# server.append_worker(T5)
# server.run()