-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathpretrain_cpm_ant_plus.py
436 lines (369 loc) · 15.7 KB
/
pretrain_cpm_ant_plus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import time
from typing import Optional
import torch
import bmtrain as bmt
import json
import os
import datetime
from cpm_live.dataset import DistributedDataset
from cpm_live import get_args
import distutils.version # noqa: F401
from torch.utils.tensorboard import SummaryWriter
from cpm_live.models import CPMAntPlus, CPMAntConfig
from cpm_live.tokenizers import CPMAntPlusTokenizer
from training_tasks.ant_plus import CPMAntPlusPretrainDataset
def get_tokenizer(args):
tokenizer = CPMAntPlusTokenizer()
return tokenizer
def get_model(args):
config = CPMAntConfig.from_json_file(args.model_config)
model = CPMAntPlus(config)
if args.load is not None:
bmt.load(model, args.load)
else:
bmt.init_parameters(model)
args.prompt_length = config.prompt_length
return model
def get_optimizer(args, model):
optimizer = bmt.optim.AdamOffloadOptimizer(
model.parameters(), weight_decay=args.weight_decay, scale=args.loss_scale
)
if args.load is not None:
if os.path.exists(os.path.join(args.save, args.save_name + (".rank-%d.opt" % 0))):
# optimizer state exists
states = torch.load(
os.path.join(args.save, args.save_name + (".rank-%d.opt" % bmt.rank()))
)
optimizer.load_state_dict(states)
return optimizer
def get_learning_rate_scheduler(args, optimizer):
if args.lr_decay_iters is None:
args.lr_decay_iters = args.train_iters * args.epochs
lr_scheduler = bmt.lr_scheduler.Noam(
optimizer,
start_lr=args.lr,
warmup_iter=args.warmup_iters,
end_iter=args.lr_decay_iters,
num_iter=args.start_step,
)
return lr_scheduler
def setup_model_and_optimizer(args):
tokenizer = get_tokenizer(args)
model = get_model(args)
bmt.synchronize()
optimizer = get_optimizer(args, model)
lr_scheduler = get_learning_rate_scheduler(args, optimizer)
bmt.synchronize()
return tokenizer, model, optimizer, lr_scheduler
def initialize():
args = get_args()
bmt.init_distributed(seed=args.seed, loss_scale_factor=2, loss_scale_steps=512)
if args.save is not None:
os.makedirs(args.save, exist_ok=True)
return args
def see_memory(detail=False):
if detail:
res = torch.cuda.memory_summary()
else:
res = (
round(torch.cuda.memory_allocated() / (1024 * 1024 * 1024), 2),
round(torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024), 2),
)
torch.cuda.reset_peak_memory_stats()
return res
def add_mem_time(info, mem_usage, tim_usage):
torch.cuda.synchronize()
mem_usage[info] = see_memory()
tim_usage[info] = time.time()
return mem_usage, tim_usage
def get_log_time() -> datetime.datetime:
return datetime.datetime.utcnow() + datetime.timedelta(hours=16)
def get_log_name(now: Optional[datetime.datetime] = None) -> str:
if now is None:
now = get_log_time()
return "log.%s.txt" % now.strftime("%Y%m%d")
def lookup_latest_log():
now = get_log_time()
# try to find the latest log in the last 15 days
for _ in range(15):
log_name = get_log_name(now)
if os.path.exists(log_name):
with open(log_name, "r") as flog:
line = flog.readlines()[-1] # get last log
return json.loads(line)
now -= datetime.timedelta(days=1) # try the previous day
return None
def get_tasks():
TASK_FILE_NAME = "tasks.json"
if not hasattr(get_tasks, "info"):
m_time = os.stat(TASK_FILE_NAME).st_mtime
tasks = json.load(open(TASK_FILE_NAME, "r", encoding="utf-8"))
get_tasks.info = {"m_time": m_time, "tasks": tasks}
else:
m_time = os.stat(TASK_FILE_NAME).st_mtime
if m_time != get_tasks.info["m_time"]:
tasks = json.load(open(TASK_FILE_NAME, "r", encoding="utf-8"))
get_tasks.info = {"m_time": m_time, "tasks": tasks}
return get_tasks.info["tasks"]
class BatchPacker:
def __init__(self, dataset, max_length, batch_size):
self.dataset = dataset
self.max_length = max_length
self.batch_size = batch_size
def __iter__(self):
ctx = []
tgt = []
context = []
position = []
segment = []
span = []
task_info = []
for data in self.dataset:
(
ctx_data,
tgt_data,
_len,
context_data,
position_data,
segment_data,
task_data,
) = data
if ctx_data is None:
continue
assert _len <= self.max_length
ctx_data = ctx_data.astype("int64")
tgt_data = tgt_data.astype("int64")
for index in range(len(ctx)):
if span[index][-1] + _len < self.max_length:
ctx[index][span[index][-1] : span[index][-1] + _len] = torch.from_numpy(
ctx_data
)[:_len].long()
tgt[index][span[index][-1] : span[index][-1] + _len] = torch.from_numpy(
tgt_data
)[:_len].long()
context[index][span[index][-1] : span[index][-1] + _len] = torch.from_numpy(
context_data
)[:_len].bool()
position[index][span[index][-1] : span[index][-1] + _len] = torch.from_numpy(
position_data
)[:_len].long()
segment[index][span[index][-1] : span[index][-1] + _len] = torch.from_numpy(
segment_data
)[:_len].long()
task_info[index][span[index][-1] : span[index][-1] + _len] = torch.from_numpy(
task_data
)[:_len].long()
span[index].append(span[index][-1] + _len)
break
else:
_ctx = torch.zeros((self.max_length,), dtype=torch.long)
_ctx[:_len] = torch.from_numpy(ctx_data)[:_len].long()
_tgt = torch.full((self.max_length,), -100, dtype=torch.long)
_tgt[:_len] = torch.from_numpy(tgt_data)[:_len].long()
_context = torch.full((self.max_length,), False, dtype=torch.bool)
_context[:_len] = torch.from_numpy(context_data)[:_len].bool()
_position = torch.full((self.max_length,), False, dtype=torch.long)
_position[:_len] = torch.from_numpy(position_data)[:_len].long()
_segment = torch.full((self.max_length,), False, dtype=torch.long)
_segment[:_len] = torch.from_numpy(segment_data)[:_len].long()
_task_info = torch.full((self.max_length,), -1, dtype=torch.long)
_task_info[:_len] = torch.from_numpy(task_data)[:_len].long()
ctx.append(_ctx)
tgt.append(_tgt)
context.append(_context)
position.append(_position)
segment.append(_segment)
task_info.append(_task_info)
span.append([_len])
if len(ctx) > self.batch_size:
_span = torch.zeros((self.batch_size, self.max_length + 1), dtype=torch.long)
for bindex in range(self.batch_size):
for sindex in span[bindex]:
_span[bindex][sindex] = 1
yield {
"ctx": torch.stack(ctx[: self.batch_size]),
"tgt": torch.stack(tgt[: self.batch_size]),
"context": torch.stack(context[: self.batch_size]),
"segment": torch.stack(segment[: self.batch_size]),
"position": torch.stack(position[: self.batch_size]),
"span": torch.cumsum(_span, dim=-1)[:, :-1],
"len_ctx": torch.LongTensor([it[-1] for it in span[: self.batch_size]]),
"task": torch.stack(task_info[: self.batch_size]),
}
ctx = ctx[self.batch_size :]
tgt = tgt[self.batch_size :]
context = context[self.batch_size :]
segment = segment[self.batch_size :]
position = position[self.batch_size :]
span = span[self.batch_size :]
task_info = task_info[self.batch_size :]
def pretrain(args, tokenizer, model, optimizer, lr_scheduler, dataset):
average_time = bmt.utils.AverageRecorder()
loss_func = bmt.loss.FusedCrossEntropy(ignore_index=-100)
start_step = args.start_step
if bmt.rank() == 0:
writer = SummaryWriter(log_dir=args.log_dir)
global_token_pass = 0.0
global_throughout = 0.0
global_world_size = bmt.world_size()
if bmt.rank() == 0:
latest_log = lookup_latest_log()
if latest_log is not None:
global_token_pass = latest_log["token pass"]
if os.path.exists(os.path.join(args.save, args.save_name + ("-%d.data.pt" % start_step))):
# load dataset states if exists
dataset_states = torch.load(
os.path.join(args.save, args.save_name + ("-%d.data.pt" % start_step))
)
dataset.dataset.load_state_dict(dataset_states)
dataloader = BatchPacker(dataset, args.max_length, args.batch_size)
for iteration, data in enumerate(dataloader):
iteration = iteration + start_step + 1
assert len(data["ctx"]) == args.batch_size
input_idx = data["ctx"].int().cuda()
input_length = data["len_ctx"].int().cuda()
input_context = data["context"].bool().cuda()
input_position = data["position"].float().cuda()
input_segment = data["segment"].int().cuda()
input_span = data["span"].int().cuda()
targets = data["tgt"].long().cuda()
task_info = data["task"].long().cuda()
# ===========
optimizer.zero_grad()
torch.cuda.empty_cache()
mem_usage = {}
tim_usage = {}
mem_usage, tim_usage = add_mem_time("init", mem_usage, tim_usage)
# ===========
logits, _ = model(
input_idx,
input_length,
input_context,
input_position,
input_segment,
input_span,
)
loss = loss_func(logits.view(-1, logits.size(-1)), targets.view(-1))
global_loss = bmt.sum_loss(loss).item()
mem_usage, tim_usage = add_mem_time("forward", mem_usage, tim_usage)
# ===========
loss = optimizer.loss_scale(loss)
loss.backward()
mem_usage, tim_usage = add_mem_time("backward", mem_usage, tim_usage)
# ===========
grad_norm = bmt.optim.clip_grad_norm(
optimizer.param_groups, args.clip_grad, scale=optimizer.scale, norm_type=2
)
bmt.optim_step(optimizer, lr_scheduler)
mem_usage, tim_usage = add_mem_time("optim", mem_usage, tim_usage)
# ==========
iteration_time = tim_usage["optim"] - tim_usage["init"]
average_time.record(iteration_time)
task_ids = get_tasks()
with torch.no_grad():
task_num = len(task_ids)
logits_tmp = logits.view(-1, logits.size(-1)).expand(task_num, -1, -1)
targets_tmp = targets.expand(task_num, -1, -1)
task_info = task_info.expand(task_num, -1, -1)
task = task_info.new([x for x in range(task_num)])[:, None, None]
targets_tmp = torch.where(task_info == task, targets_tmp, -100)
task_loss_list = []
for i in range(task_num):
task_loss = loss_func(logits_tmp[i, :], targets_tmp[i, :].view(-1))
global_task_loss = bmt.gather_result(task_loss.unsqueeze(0)).nanmean().item()
task_loss_list.append(global_task_loss)
local_total_rate = torch.Tensor([input_length.float().mean() / args.max_length]).cuda()
local_total_rate = bmt.sum_loss(local_total_rate).item()
global_token_pass += (
global_world_size
* local_total_rate
* (args.max_length - args.prompt_length)
* args.batch_size
)
avg_time = average_time.value
global_throughout += (
(args.max_length - args.prompt_length) * args.batch_size * local_total_rate / avg_time
)
train_info = {
"time": tim_usage["init"],
"iter": iteration,
"loss": global_loss,
"lr": lr_scheduler.current_lr,
"lr scale": int(optimizer.scale),
"time usage": tim_usage,
"mem usage": mem_usage,
"avg time (s)": avg_time,
"token/max": local_total_rate,
"token pass": global_token_pass,
"throughout (token/s)": (args.max_length - args.prompt_length)
* args.batch_size
* local_total_rate
/ avg_time,
"global throughout (token/s)": global_throughout / iteration,
"grad_norm": grad_norm.item(),
"mask/max": ((targets >= 0).sum(-1).float().mean() / args.max_length).item(),
"num_gpus": global_world_size,
}
task_loss = {task_name: task_loss_list[idx] for (task_name, idx) in task_ids.items()}
train_info["task_loss"] = task_loss
bmt.print_rank(
(
"| Iter: {:6d} | loss: {:.4f} | lr: {:.4e}, scale: {:10.4f} | time: {:.4f} |"
+ " token/max: {:.4f} | mask/max: {:.4f} | grad_norm: {:.4f}"
).format(
iteration,
global_loss,
lr_scheduler.current_lr,
int(optimizer.scale),
avg_time,
input_length.float().mean() / args.max_length,
(targets >= 0).sum(-1).float().mean() / args.max_length,
grad_norm,
)
)
bmt.print_rank(
"| "
+ " | ".join(
[
"{} loss: {:.4f}".format(task_name, task_loss_list[idx])
for task_name, idx in task_ids.items()
]
)
)
if iteration % args.inspect_iters == 0:
model_inspect = bmt.inspect.inspect_model(model, "*")
bmt.print_rank(bmt.inspect.format_summary(model_inspect))
train_info["model_inspect"] = model_inspect
if bmt.rank() == 0:
with open(get_log_name(), "a") as ff:
ff.write(json.dumps(train_info) + "\n")
if bmt.rank() == 0:
writer.add_scalar("Loss/train", global_loss, iteration)
for i in task_ids.keys():
writer.add_scalar("Loss/train/{}".format(i), task_loss_list[task_ids[i]], iteration)
if args.save is not None and iteration % args.save_iters == 0:
bmt.save(model, os.path.join(args.save, args.save_name + ("-%d.pt" % iteration)))
torch.save(
optimizer.state_dict(),
os.path.join(args.save, args.save_name + (".rank-%d.opt" % bmt.rank())),
)
all_states = dataset.dataset.state_dict()
if bmt.rank() == 0:
# rank 0 writes the dataloader state
torch.save(
all_states,
os.path.join(args.save, args.save_name + ("-%d.data.pt" % iteration)),
)
del all_states
def main():
args = initialize()
tokenizer, model, optimizer, lr_scheduler = setup_model_and_optimizer(args)
dataset = CPMAntPlusPretrainDataset(
DistributedDataset("path/to/binary/file", bmt.rank(), bmt.world_size()),
max_length=args.max_length - args.prompt_length,
prompt_length=args.prompt_length,
tokenizer=tokenizer,
)
pretrain(args, tokenizer, model, optimizer, lr_scheduler, dataset)
if __name__ == "__main__":
main()