-
Notifications
You must be signed in to change notification settings - Fork 599
/
Copy pathP02_NumpyDataTypes.py
34 lines (29 loc) · 1.67 KB
/
P02_NumpyDataTypes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Author: OMKAR PATHAK
# Data type Description
# bool_ Boolean (True or False) stored as a byte
# int_ Default integer type (same as C long; normally either int64 or int32)
# intc Identical to C int (normally int32 or int64)
# intp Integer used for indexing (same as C ssize_t; normally either int32 or int64)
# int8 Byte (-128 to 127)
# int16 Integer (-32768 to 32767)
# int32 Integer (-2147483648 to 2147483647)
# int64 Integer (-9223372036854775808 to 9223372036854775807)
# uint8 Unsigned integer (0 to 255)
# uint16 Unsigned integer (0 to 65535)
# uint32 Unsigned integer (0 to 4294967295)
# uint64 Unsigned integer (0 to 18446744073709551615)
# float_ Shorthand for float64.
# float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
# float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
# float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
# complex_ Shorthand for complex128.
# complex64 Complex number, represented by two 32-bit floats (real and imaginary components)
# complex128 Complex number, represented by two 64-bit floats (real and imaginary components)
import numpy as np
# while creating a numpy array, any data type from above can be explicitly specified.
myArray = np.arange(10)
print(myArray) # [0 1 2 3 4 5 6 7 8 9]
myArray = np.array(myArray, dtype = np.float32)
print(myArray) # [ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
myArray = np.array(myArray, dtype = np.complex64)
print(myArray) # [ 0.+0.j 1.+0.j 2.+0.j 3.+0.j 4.+0.j 5.+0.j 6.+0.j 7.+0.j 8.+0.j 9.+0.j]