-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLogisticRegression.py
75 lines (63 loc) · 2.43 KB
/
LogisticRegression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, roc_auc_score
import redis
import yaml
import matplotlib.pyplot as plt
# Load configuration and create a Redis connection
def load_config():
try:
with open("config.yaml", "r") as file:
return yaml.safe_load(file)
except Exception as e:
print(f"Error loading configuration: {e}")
raise
def get_redis_connection(config):
try:
connection = redis.Redis(
host=config["redis"]["host"],
port=config["redis"]["port"],
db=0,
decode_responses=True,
username=config["redis"]["user"],
password=config["redis"]["password"],
)
return connection
except Exception as e:
print(f"Error creating Redis connection: {e}")
raise
def fetch_data_from_redis(redis_conn, limit=100):
keys = redis_conn.keys('row:*')[:limit]
data = []
for key in keys:
data.append(redis_conn.hgetall(key))
return pd.DataFrame(data)
if __name__ == "__main__":
config = load_config()
redis_conn = get_redis_connection(config)
df = fetch_data_from_redis(redis_conn, limit=100)
# Convert data to numeric, handle missing data
df = df.apply(pd.to_numeric, errors='coerce').dropna()
# Prepare data for modeling
X = df.drop(['Stroke'], axis=1)
y = df['Stroke']
# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Initialize and train Logistic Regression
lr_model = LogisticRegression(max_iter=1000, random_state=42)
lr_model.fit(X_train, y_train)
# Predict and evaluate the model
predictions = lr_model.predict(X_test)
probabilities = lr_model.predict_proba(X_test)[:, 1]
print("Classification Report:\n", classification_report(y_test, predictions))
print("ROC AUC Score:", roc_auc_score(y_test, probabilities))
# Feature importance visualization based on coefficients
features = X.columns
feature_importances = lr_model.coef_[0]
plt.figure(figsize=(12, 8))
sorted_indices = feature_importances.argsort()
plt.barh(features[sorted_indices], feature_importances[sorted_indices], color='skyblue')
plt.xlabel('Coefficient Value')
plt.title('Feature Importance in Logistic Regression Model')
plt.show()