-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_triplet_i1_i1_i2.py
463 lines (378 loc) · 17.1 KB
/
train_triplet_i1_i1_i2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Modified from MixOE
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.nn.functional as F
import torch.nn as nn
import torch
import csv
from collections import OrderedDict
from tqdm import tqdm
import numpy as np
import os
import argparse
import sys
sys.path.append('..')
from utils import (
AverageMeter, accuracy, data_load
)
from models import resnet50
from eval.eval import main_eval
class SoftCE(nn.Module):
def __init__(self, reduction="mean"):
super(SoftCE, self).__init__()
self.reduction = reduction
def forward(self, logits, soft_targets):
preds = logits.log_softmax(dim=-1)
assert preds.shape == soft_targets.shape
loss = torch.sum(-soft_targets * preds, dim=-1)
if self.reduction == "mean":
return torch.mean(loss)
elif self.reduction == "sum":
return torch.sum(loss)
elif self.reduction == "none":
return loss
else:
raise ValueError(
"Reduction type '{:s}' is not supported!".format(self.reduction))
class L2_norm(nn.Module):
def __init__(self):
super(L2_norm, self).__init__()
def forward(self, x):
return F.normalize(x, p=2, dim=1)
# /////////////// Setup ///////////////
# Arguments
parser = argparse.ArgumentParser(description='Trains a classifier')
# Dataset options
parser.add_argument('--dataset', type=str, choices=['bird', 'butterfly', 'car', 'aircraft'],
help='Choose the dataset', required=True)
parser.add_argument('--data-dir', type=str, default='../data')
parser.add_argument('--info-dir', type=str, default='../info')
# Model options
parser.add_argument('--model', '-m', type=str,
default='rn', help='Choose architecture.')
parser.add_argument('--beta2', type=float, default=5.0,
help='Weighting factor for the triplet norm.')
parser.add_argument('--beta', type=float, default=0.1,
help='Weighting factor for the triplet loss.')
parser.add_argument('--alpha', type=float, default=0.0,
help='Beta distribution parameter')
parser.add_argument('--oe-set', type=str,
default='WebVision', choices=['WebVision'])
# Optimization options
parser.add_argument('--torch-seed', '-ts', type=int,
default=0, help='Random seed.')
parser.add_argument('--epochs', '-e', type=int, default=10,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.001,
help='The initial learning rate.')
parser.add_argument('--batch-size', '-b', type=int,
default=32, help='Batch size.')
parser.add_argument('--test-bs', type=int, default=100)
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--decay', '-d', type=float,
default=0.00001, help='Weight decay (L2 penalty).')
# Checkpoints
parser.add_argument('--save-dir', type=str, default=None,
help='Folder to save checkpoints.')
# Acceleration
parser.add_argument('--gpu', nargs='*', type=int, default=[0, 1])
parser.add_argument('--prefetch', type=int, default=2,
help='Pre-fetching threads.')
parser.add_argument('--runs', type=int, default=5)
parser.add_argument('--margin', type=float, default=0.05)
parser.add_argument('--mixup', type=int, default=0)
parser.add_argument('--id', type=int, default=1)
args = parser.parse_args()
def cosine_annealing(step, total_steps, lr_max, lr_min):
return lr_min + (lr_max - lr_min) * 0.5 * (
1 + np.cos(step / total_steps * np.pi))
# /////////////// Training ///////////////
# train function
def train():
net.train() # enter train mode
current_lr = scheduler.get_last_lr()[0]
losses = AverageMeter('Loss', ':.4e')
id_losses = AverageMeter('ID Loss', ':.4e')
triplet_losses = AverageMeter('Triplet Loss', ':.4e')
mixed_losses = AverageMeter('Mixed Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
batch_iter = tqdm(train_loader, total=len(train_loader),
desc='Batch', leave=False, position=2)
# start at a random point of the outlier dataset; this induces more randomness without obliterating locality
oe_loader.dataset.offset = np.random.randint(len(oe_loader.dataset))
oe_iter = iter(oe_loader)
for x, y in batch_iter:
bs = x.size(0)
try:
oe_x, _ = next(oe_iter)
except StopIteration:
continue
assert bs == oe_x.size(0)
x, y = x.cuda(), y.cuda()
oe_x = oe_x.cuda()
one_hot_y = torch.zeros(bs, num_classes).cuda()
one_hot_y.scatter_(1, y.view(-1, 1), 1)
# ID loss
logits, embeddings = net(x, return_embeddings=True)
if args.id:
id_loss = F.cross_entropy(logits, y)
# Mixup loss
lam = np.random.beta(args.alpha, args.alpha)
if args.mixup:
mixed_x = lam * x + (1 - lam) * oe_x
mixed_x = net(mixed_x)
oe_y = torch.ones(oe_x.size(0), num_classes).cuda() / num_classes
soft_labels = lam * one_hot_y + (1 - lam) * oe_y
mixed_loss = soft_xent(mixed_x, soft_labels)
embeddings_n = F.normalize(embeddings, p=2, dim=-1)
distance = 1 - torch.mm(embeddings_n, embeddings_n.t())
triplet_loss = torch.zeros(1, requires_grad=True).cuda()
count = 0
for i in range(embeddings.shape[0]):
row = distance[i]
positive_inds = torch.where(y == y[i])[0]
negative_inds = torch.where(y != y[i])[0]
if positive_inds.shape[0] == 1 or negative_inds.shape[0] == 1:
continue
count += positive_inds.shape[0]
anchor = embeddings[i]
negative = embeddings[torch.argmin(row[negative_inds])]
positive = embeddings[positive_inds]
anchor = anchor[None, :].repeat(positive.shape[0], 1)
negative = negative[None, :].repeat(positive.shape[0], 1)
triplet_loss += triplet_loss_m(anchor, positive, negative)
loss = args.beta * triplet_loss
if args.id:
loss += id_loss
if args.mixup == 1:
loss += mixed_loss
if args.mixup == 2:
loss += args.beta2 * mixed_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
acc1, acc5 = accuracy(logits, y, topk=(1, 5))
losses.update(loss.item(), x.size(0))
if args.id:
id_losses.update(id_loss.item(), x.size(0))
if args.mixup:
mixed_losses.update(mixed_loss.item(), x.size(0))
if count != 0:
triplet_losses.update(triplet_loss.item(), count)
top1.update(acc1, x.size(0))
top5.update(acc5, x.size(0))
if args.mixup:
mixed_losses_avg = mixed_losses.avg
else:
mixed_losses_avg = 0
print_message = "Epoch [{:3d}] | ID Loss: {:.4f}, Triplet Loss: {:.4f}, Mixed Loss: {:.4f}, Top1 Acc: {:.2f}, Top5 Acc: {:.2f}".format(
epoch, id_losses.avg, triplet_losses.avg, mixed_losses_avg, top1.avg, top5.avg)
tqdm.write(print_message)
writer.add_scalar('train/loss', losses.avg, epoch)
writer.add_scalar('train/id_loss', id_losses.avg, epoch)
writer.add_scalar('train/triplet_loss', triplet_losses.avg, epoch)
writer.add_scalar('train/margin_loss', mixed_losses_avg, epoch)
writer.add_scalar('train/acc_top1', top1.avg, epoch)
writer.add_scalar('train/acc_top5', top5.avg, epoch)
writer.add_scalar('lr', current_lr, epoch)
# test function
def test():
net.eval()
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
with torch.no_grad():
for x, y in test_loader:
x, y = x.cuda(), y.cuda()
output = net(x)
acc1, acc5 = accuracy(output, y, topk=(1, 5))
top1.update(acc1, x.size(0))
top5.update(acc5, x.size(0))
print_message = 'Evaluation | Top1 Acc: {:.2f}, Top5 Acc: {:.2f}\n'.format(
top1.avg, top5.avg)
tqdm.write(print_message)
writer.add_scalar('test/acc_top1', top1.avg, epoch)
writer.add_scalar('test/acc_top5', top5.avg, epoch)
return top1.avg
if __name__ == "__main__":
name_row = ["method", "alpha", "beta", "epochs",
"batch_size", "margin", "mixup"]
splits = 3
runs = args.runs
# Prepare csv file format
for spl in range(splits):
for rn in range(runs):
name_row += ["split{}_run{}_acc".format(spl, rn), "split{}_run{}_tpr".format(spl, rn),
"split{}_run{}_tnr_fine".format(spl, rn), "split{}_run{}_tnr_coarse".format(spl, rn),
"split{}_run{}_tnr95_coarse".format(spl, rn), "split{}_run{}_tnr95_fine".format(spl, rn)]
name_row += ["mean_acc_split{}".format(spl), "std_acc_split{}".format(spl),
"mean_tpr_split{}".format(spl), "std_tpr_split{}".format(spl),
"mean_tnr_fine_split{}".format(spl), "std_tnr_fine_split{}".format(spl),
"mean_tnr_coarse_split{}".format(spl), "std_tnr_coarse_split{}".format(spl),
"mean_tnr95_fine_split{}".format(spl),
"std_tnr95_fine_split{}".format(spl), "mean_tnr95_coarse_split{}".format(spl), "std_tnr95_coarse_split{}".format(spl)]
name_row += ["mean_acc_across_splits", "std_acc_across_splits",
"mean_tpr_across_splits", "std_tpr_across_splits",
"mean_tnr_fine_across_splits", "std_tnr_fine_across_splits",
"mean_tnr_coarse_across_splits", "std_tnr_coarse_across_splits",
"mean_tnr95_fine_across_splits", "std_tnr95_fine_across_splits",
"mean_tnr95_coarse_across_splits", "std_tnr95_coarse_across_splits"]
last_row = ["i1_i1_i2", args.alpha, args.beta, args.epochs,
args.batch_size, args.margin, args.mixup]
csv_file_name = "/home/hutorole/code/metric_oe/csv_results/dataset={}_beta={}_epochs={}_margin={}_mixup={}_id={}_i1_i1_i2.csv".format(
args.dataset, args.beta, args.epochs, args.margin, args.mixup, args.id)
print("csv file: ", csv_file_name)
all_acc, all_ftnr, all_ctnr = [], [], []
all_tpr, all_tnr_fine, all_tnr_coarse = [], [], []
for spl in range(splits):
runs_acc, runs_ftnr, runs_ctnr = [], [], []
runs_tpr, runs_tnr_fine, runs_tnr_coarse = [], [], []
for rn in range(runs):
print("split, run: ", spl, rn)
# Set random seed for torch
torch.manual_seed(args.torch_seed)
# Prepare data
train_set, test_set, oe_set = data_load.load_data(
args.data_dir, args.dataset, args.info_dir, spl)
train_loader = DataLoader(
train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.prefetch, pin_memory=False, drop_last=True
)
test_loader = DataLoader(
test_set, batch_size=args.test_bs, shuffle=False,
num_workers=args.prefetch, pin_memory=False
)
oe_loader = DataLoader(
oe_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.prefetch, pin_memory=False
)
mixoe_related = ''
mixoe_related += '{}_alpha={:.1f}_beta={:.1f}'.format(
args.oe_set, 0, args.beta)
args.save_dir = os.path.join(
'/home/hutorole/code/metric_oe/checkpoints', args.dataset,
'split_{}'.format(spl),
'{}_{}_epochs={}_bs={}_ind={}_outl_class={}_outl_num={}_margin={}_mixup={}_id={}_i1_i1_i2'.format(
args.model, mixoe_related, args.epochs, args.batch_size, rn, 0, 0, args.margin, args.mixup, args.id)
)
chkpnt_path = os.path.join(
args.save_dir, 'seed_{}.pth'.format(args.torch_seed))
print("Checkpoint path: ", chkpnt_path)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
elif os.path.isfile(chkpnt_path):
print('*********************************')
print('* The checkpoint already exists *')
print('*********************************')
writer = SummaryWriter(
args.save_dir.replace('checkpoints', 'runs'))
# Set up GPU
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(
map(lambda x: str(x), args.gpu))
# Create model
if args.model == 'rn':
net = resnet50()
pretrained_model_file = '/home/hutorole/code/mixoe/checkpoints/{}/split_{}/rn_baseline_epochs=90_bs=32/seed_0.pth'.format(
args.dataset, spl)
state_dict = torch.load(pretrained_model_file)
# if rn == 0:
# main_eval(pretrained_model_file, train_set, 20)
else:
raise NotImplementedError
num_classes = train_set.num_classes
in_features = net.fc.in_features
new_fc = nn.Linear(in_features, num_classes)
net.fc = new_fc
try:
net.load_state_dict(state_dict)
except RuntimeError:
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.` caused by nn.DataParallel
new_state_dict[name] = v
net.load_state_dict(new_state_dict)
net.cuda()
if torch.cuda.device_count() > 1:
net = torch.nn.DataParallel(net)
cudnn.benchmark = True # fire on all cylinders
# Optimizer and scheduler
optimizer = optim.SGD(
net.parameters(), args.lr, momentum=args.momentum,
weight_decay=args.decay, nesterov=True
)
scheduler = optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda step: cosine_annealing(
step,
args.epochs * len(train_loader),
1, # since lr_lambda computes multiplicative factor
1e-6 / args.lr)
)
soft_xent = SoftCE()
triplet_loss_m = nn.TripletMarginWithDistanceLoss(distance_function=lambda x, y: 1.0 - F.cosine_similarity(x, y), margin=args.margin)
# Main loop
epoch_iter = tqdm(list(range(1, args.epochs+1)), total=args.epochs, desc='Epoch',
leave=True, position=1)
best_acc1 = 0
for epoch in epoch_iter:
train()
acc1 = test()
if acc1 > best_acc1:
# Save model
torch.save(
net.state_dict(),
chkpnt_path
)
best_acc1 = max(acc1, best_acc1)
acc, tnrs, tpr, tnr_fine, tnr_coarse = main_eval(chkpnt_path, train_set,20 )
print(acc, tnrs)
last_row.append(acc)
last_row.append(tpr)
last_row.append(tnr_fine)
last_row.append(tnr_coarse)
last_row.append(tnrs['coarse'])
last_row.append(tnrs['fine'])
runs_acc.append(acc)
runs_tpr.append(tpr)
runs_tnr_fine.append(tnr_fine)
runs_tnr_coarse.append(tnr_coarse)
runs_ctnr.append(tnrs['coarse'])
runs_ftnr.append(tnrs['fine'])
last_row.append(np.mean(runs_acc))
last_row.append(np.std(runs_acc))
last_row.append(np.mean(runs_tpr))
last_row.append(np.std(runs_tpr))
last_row.append(np.mean(runs_tnr_fine))
last_row.append(np.std(runs_tnr_fine))
last_row.append(np.mean(runs_tnr_coarse))
last_row.append(np.std(runs_tnr_coarse))
last_row.append(np.mean(runs_ctnr))
last_row.append(np.std(runs_ctnr))
last_row.append(np.mean(runs_ftnr))
last_row.append(np.std(runs_ftnr))
all_acc.extend(runs_acc)
all_tpr.extend(runs_tpr)
all_tnr_fine.extend(runs_tnr_fine)
all_tnr_coarse.extend(runs_tnr_coarse)
all_ctnr.extend(runs_ctnr)
all_ftnr.extend(runs_ftnr)
last_row.append(np.mean(all_acc))
last_row.append(np.std(all_acc))
last_row.append(np.mean(runs_tpr))
last_row.append(np.std(runs_tpr))
last_row.append(np.mean(runs_tnr_fine))
last_row.append(np.std(runs_tnr_fine))
last_row.append(np.mean(runs_tnr_coarse))
last_row.append(np.std(runs_tnr_coarse))
last_row.append(np.mean(all_ctnr))
last_row.append(np.std(all_ctnr))
last_row.append(np.mean(all_ftnr))
last_row.append(np.std(all_ftnr))
assert len(name_row) == len(last_row)
with open(csv_file_name, 'w+') as f:
csv_writer = csv.writer(f, delimiter=',')
csv_writer.writerow(name_row)
csv_writer.writerow(last_row)