-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mixoe_inliers.py
301 lines (239 loc) · 9.67 KB
/
train_mixoe_inliers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import wandb
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
import torch.optim as optim
import torch.nn.functional as F
import torch.nn as nn
import torch
from tqdm import tqdm
import numpy as np
import os
import argparse
import sys
sys.path.append('..')
from utils import (
AverageMeter, accuracy, data_load
)
from eval.eval import main_eval
class SoftCE(nn.Module):
def __init__(self, reduction="mean"):
super(SoftCE, self).__init__()
self.reduction = reduction
def forward(self, logits, soft_targets):
preds = logits.log_softmax(dim=-1)
assert preds.shape == soft_targets.shape
loss = torch.sum(-soft_targets * preds, dim=-1)
if self.reduction == "mean":
return torch.mean(loss)
elif self.reduction == "sum":
return torch.sum(loss)
elif self.reduction == "none":
return loss
else:
raise ValueError(
"Reduction type '{:s}' is not supported!".format(self.reduction))
# /////////////// Setup ///////////////
# Arguments
parser = argparse.ArgumentParser(description='Trains a classifier')
# Dataset options
parser.add_argument('--dataset', type=str, choices=['bird', 'butterfly', 'car', 'aircraft'],
help='Choose the dataset', required=True)
parser.add_argument('--data-dir', type=str, default='../data')
parser.add_argument('--info-dir', type=str, default='../info')
parser.add_argument('--split', '-s', type=int, default=0)
# Model options
parser.add_argument('--model', '-m', type=str,
default='rn', help='Choose architecture.')
# MixOE options
parser.add_argument('--alpha', type=float, default=1.0,
help='Parameter for Beta distribution.')
parser.add_argument('--beta', type=float, default=1.0,
help='Weighting factor for the OE objective.')
parser.add_argument('--oe-set', type=str,
default='WebVision', choices=['WebVision'])
# Optimization options
parser.add_argument('--torch-seed', '-ts', type=int,
default=0, help='Random seed.')
parser.add_argument('--epochs', '-e', type=int, default=10,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.001,
help='The initial learning rate.')
parser.add_argument('--batch-size', '-b', type=int,
default=32, help='Batch size.')
parser.add_argument('--test-bs', type=int, default=100)
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--decay', '-d', type=float,
default=0.00001, help='Weight decay (L2 penalty).')
# Checkpoints
parser.add_argument('--save-dir', type=str, default=None,
help='Folder to save checkpoints.')
# Acceleration
parser.add_argument('--gpu', nargs='*', type=int, default=[0, 1])
parser.add_argument('--prefetch', type=int, default=4,
help='Pre-fetching threads.')
parser.add_argument('--run', type=int, default=0, help='Run number')
args = parser.parse_args()
wandb.init(
# set the wandb project where this run will be logged
# project="MixOE_{}_10".format(args.dataset),
project="{}".format(args.dataset),
# track hyperparameters and run metadata
config={
"learning_rate": args.lr,
"architecture": args.model,
"dataset": args.dataset,
"epochs": args.epochs,
"mix_op": "mixoe_inliers",
},
# group="split{}".format(args.split)
group="mixoe_inliers_epochs={}".format(args.epochs),
name="split={}_run={}".format(args.split, args.run)
)
train_set, test_set, oe_set = data_load.load_data(
args.data_dir, args.dataset, args.info_dir, args.split)
num_classes = train_set.num_classes
train_loader = DataLoader(
train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.prefetch, pin_memory=False, drop_last=True
)
test_loader = DataLoader(
test_set, batch_size=args.test_bs, shuffle=False,
num_workers=args.prefetch, pin_memory=False
)
oe_loader = DataLoader(
oe_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.prefetch, pin_memory=False
)
# Set up checkpoint directory and tensorboard writer
if args.save_dir is None:
mixoe_related = 'mixoe_inliers'
mixoe_related += f'_{args.oe_set}_alpha={args.alpha:.1f}_beta={args.beta:.1f}_run={args.run}'
args.save_dir = os.path.join(
'../checkpoints', args.dataset,
f'split_{args.split}',
f'{args.model}_{mixoe_related}_epochs={args.epochs}_bs={args.batch_size}'
)
else:
assert 'checkpoints' in args.save_dir, \
"If 'checkpoints' not in save_dir, then you may have an unexpected directory for writer..."
chkpnt_path = os.path.join(args.save_dir, f'seed_{args.torch_seed}.pth')
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
elif os.path.isfile(chkpnt_path):
print('*********************************')
print('* The checkpoint already exists *')
print('*********************************')
writer = SummaryWriter(args.save_dir.replace('checkpoints', 'runs'))
# Set up GPU
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(map(lambda x: str(x), args.gpu))
net = data_load.load_net(args.dataset, args.split, num_classes)
# Optimizer and scheduler
optimizer = optim.SGD(
net.parameters(), args.lr, momentum=args.momentum,
weight_decay=args.decay, nesterov=True
)
def cosine_annealing(step, total_steps, lr_max, lr_min):
return lr_min + (lr_max - lr_min) * 0.5 * (
1 + np.cos(step / total_steps * np.pi))
scheduler = optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda step: cosine_annealing(
step,
args.epochs * len(train_loader),
1, # since lr_lambda computes multiplicative factor
1e-6 / args.lr)
)
soft_xent = SoftCE()
# /////////////// Training ///////////////
# train function
def train():
net.train() # enter train mode
current_lr = scheduler.get_last_lr()[0]
losses = AverageMeter('Loss', ':.4e')
id_losses = AverageMeter('ID Loss', ':.4e')
mixed_losses = AverageMeter('Mixed Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
batch_iter = tqdm(train_loader, total=len(train_loader),
desc='Batch', leave=False, position=2)
# start at a random point of the outlier dataset; this induces more randomness without obliterating locality
oe_loader.dataset.offset = np.random.randint(len(oe_loader.dataset))
oe_iter = iter(oe_loader)
for x, y in batch_iter:
bs = x.size(0)
try:
oe_x, _ = next(oe_iter)
except StopIteration:
continue
assert bs == oe_x.size(0)
x, y = x.cuda(), y.cuda()
oe_x = oe_x.cuda()
one_hot_y = torch.zeros(bs, num_classes).cuda()
one_hot_y.scatter_(1, y.view(-1, 1), 1)
# ID loss
logits = net(x)
id_loss = F.cross_entropy(logits, y)
# Mixup with inliers
lam = np.random.beta(args.alpha, args.alpha)
indices = torch.randperm(x.shape[0])
mixed_inl_x = lam * x + (1 - lam) * x[indices]
soft_labels = lam * one_hot_y + (1 - lam) * one_hot_y[indices]
mixed_inl_loss = soft_xent(net(mixed_inl_x), soft_labels)
# Total loss
loss = id_loss + args.beta * mixed_inl_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
acc1, acc5 = accuracy(logits, y, topk=(1, 5))
losses.update(loss.item(), x.size(0))
id_losses.update(id_loss.item(), x.size(0))
mixed_losses.update(mixed_inl_loss.item(), x.size(0))
top1.update(acc1, x.size(0))
top5.update(acc5, x.size(0))
wandb.log({"acc1": top1.avg, "acc5": top5.avg, "id_loss": id_losses.avg,
"mixed_inl_loss": mixed_losses.avg, "loss": losses.avg})
print_message = f'Epoch [{epoch:3d}] | ID Loss: {id_losses.avg:.4f}, Mixed Loss: {mixed_losses.avg:.4f}, ' \
f'Top1 Acc: {top1.avg:.2f}, Top5 Acc: {top5.avg:.2f}'
tqdm.write(print_message)
writer.add_scalar('train/loss', losses.avg, epoch)
writer.add_scalar('train/id_loss', id_losses.avg, epoch)
writer.add_scalar('train/mixed_loss', mixed_losses.avg, epoch)
writer.add_scalar('train/acc_top1', top1.avg, epoch)
writer.add_scalar('train/acc_top5', top5.avg, epoch)
writer.add_scalar('lr', current_lr, epoch)
# test function
def test():
net.eval()
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
with torch.no_grad():
for x, y in test_loader:
x, y = x.cuda(), y.cuda()
output = net(x)
acc1, acc5 = accuracy(output, y, topk=(1, 5))
top1.update(acc1, x.size(0))
top5.update(acc5, x.size(0))
print_message = f'Evaluation | Top1 Acc: {top1.avg:.2f}, Top5 Acc: {top5.avg:.2f}\n'
tqdm.write(print_message)
writer.add_scalar('test/acc_top1', top1.avg, epoch)
writer.add_scalar('test/acc_top5', top5.avg, epoch)
return top1.avg
# Main loop
epoch_iter = tqdm(list(range(1, args.epochs+1)), total=args.epochs, desc='Epoch',
leave=True, position=1)
best_acc1 = 0
for epoch in epoch_iter:
train()
acc1 = test()
if acc1 > best_acc1:
# Save model
torch.save(
net.state_dict(),
chkpnt_path
)
best_acc1 = max(acc1, best_acc1)
acc, tnrs, tpr, tnr_fine, tnr_coarse = main_eval(chkpnt_path, train_set, 20)
wandb.log({"test_acc": acc, "tnr_fine_conf": tnrs['fine'], "tnr_coarse_conf": tnrs['coarse'],
"tpr": tpr, "tnr_fine_dist": tnr_fine, "tnr_coarse_dist": tnr_coarse})
wandb.finish()