-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist-lstm.py
75 lines (60 loc) · 2.44 KB
/
mnist-lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
def RNN(X, weights, biases):
# hidden layer for input
X = tf.reshape(X, [-1, n_inputs])
X_in = tf.matmul(X, weights['in']) + biases['in']
X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units])
# cell
lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
_init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)
outputs, states = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=_init_state, time_major=False)
# hidden layer for output as the final results
# results = tf.matmul(states[1], weights['out']) + biases['out']
# or
outputs = tf.unstack(tf.transpose(outputs, [1, 0, 2]))
results = tf.matmul(outputs[-1], weights['out']) + biases['out']
return results
# load mnist data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# parameters init
l_r = 0.001
training_iters = 100000
batch_size = 128
n_inputs = 28
n_steps = 28
n_hidden_units = 128
n_classes = 10
# define placeholder for input
x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_classes])
# define w and b
weights = {
'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])),
'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
}
biases = {
'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])),
'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ]))
}
pred = RNN(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
train_op = tf.train.AdamOptimizer(l_r).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# init session
sess = tf.Session()
# init all variables
sess.run(tf.global_variables_initializer())
# start training
# for i in range(training_iters):
for i in range(training_iters):
# get batch to learn easily
batch_x, batch_y = mnist.train.next_batch(batch_size)
batch_x = batch_x.reshape([batch_size, n_steps, n_inputs])
sess.run(train_op, feed_dict={x: batch_x, y: batch_y})
if i % 50 == 0:
print(sess.run(accuracy, feed_dict={x: batch_x, y: batch_y, }))
# test_data = mnist.test.images.reshape([-1, n_steps, n_inputs])
# test_label = mnist.test.labels
# print("Testing Accuracy: ", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))