-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathanalyze-spaced-repetition.py
executable file
·238 lines (192 loc) · 8.07 KB
/
analyze-spaced-repetition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#!/usr/bin/env python
import warnings
# This removes the annoying warning from h5py
warnings.simplefilter(action='ignore', category=FutureWarning)
import matplotlib
matplotlib.use('agg')
import seaborn as sns
sns.set(style='ticks', palette='Set1')
sns.despine()
import matplotlib.pyplot as plt
import click
import os
import numpy as np
import tpprl.exp_teacher as ET
from tpprl.utils import _now
import tensorflow as tf
from tpprl.plot_utils import latexify, format_axes
@click.command()
@click.argument('initial_difficulty_csv', type=click.Path(exists=True))
@click.argument('alpha', type=float)
@click.argument('beta', type=float)
@click.argument('save_dir', type=click.Path(exists=True))
@click.option('--T', 'T', help='The learning duration (in days).', default=14, show_default=True)
@click.option('--tau', 'tau', help='Delay before the test.', default=2, show_default=True)
@click.option('--only-cpu/--no-only-cpu', 'only_cpu', help='Whether to use only the CPU during evaluation.', default=True, show_default=True)
@click.option('--batches', 'batches', help='How many test batches to sample results from.', default=100, show_default=True)
@click.option('--verbose/--no-verbose', 'verbose', help='Produce verbose output.', default=True, show_default=True)
def cmd(initial_difficulty_csv, alpha, beta, save_dir, T, tau, only_cpu, batches, verbose):
"""Read the initial difficulty of items from INITIAL_DIFFICULTY_CSV, use
the ALPHA and BETA specified, restore the teacher model from the given
SAVE_DIR and compare the performance of the method against various
baselines."""
with open(initial_difficulty_csv, 'r') as f:
n_0s = [float(x.strip()) for x in f.readline().split(',')]
num_items = len(n_0s)
init_seed = 1337
scenario_opts = {
'T': T,
'tau': tau,
'n_0s': n_0s,
'alphas': np.ones(num_items) * alpha,
'betas': np.ones(num_items) * beta,
}
summary_dir = None
teacher_opts = ET.mk_def_teacher_opts(
num_items=num_items,
hidden_dims=8,
save_dir=save_dir,
only_cpu=only_cpu,
T=T,
tau=tau,
scenario_opts=scenario_opts,
# The values here do not matter because we will not be training
# the NN here.
summary_dir=summary_dir,
learning_rate=0.02,
decay_rate=0.02,
batch_size=32,
q=0.0001,
q_entropy=0.002,
learning_bump=1.0,
decay_steps=10,
)
config = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=False
)
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
teacher = ET.ExpRecurrentTeacher(
_opts=teacher_opts,
sess=sess,
num_items=num_items
)
teacher.initialize(finalize=True)
# Restores to the latest version.
teacher.restore()
global_steps = teacher.sess.run(teacher.global_step)
if verbose:
print(_now(), "Restored successfully to step {}.".format(global_steps))
# Evaluating the performance of RL.
_f_d, RL_test_scens = ET.get_test_feed_dicts(teacher, range(init_seed, init_seed + batches))
RL_rewards = [s.reward() for s in RL_test_scens]
num_test_reviews = np.mean([x.get_num_events() for x in RL_test_scens])
# Performance using uniform baseline
rets_unif = [
ET.uniform_random_baseline(
scenario_opts, target_reviews=num_test_reviews,
seed=seed + 8, verbose=False
) for seed in range(init_seed, init_seed + batches)
]
# Performance if using Memorize.
q_MEM = ET.sweep_memorize_q(scenario_opts, num_test_reviews, q_init=1.0,
verbose=verbose)
rets_mem = [
ET.memorize_baseline(
scenario_opts, q_max=q_MEM,
seed=seed + 8, verbose=False)
for seed in range(init_seed, init_seed + batches)
]
# Plotting reward (i.e. recall at T + tau)
plt.figure()
latexify(fig_width=2.25, largeFonts=False)
colors = sns.color_palette(n_colors=3)
Y = {
'RL': RL_rewards,
'MEM': [x['reward'] / (-100) for x in rets_mem],
'Uniform': [[x['reward'] / (-100) for x in rets_unif]],
}
box = plt.boxplot([Y['RL'], Y['MEM'], Y['Uniform']],
whis=0,
showmeans=True,
showfliers=False,
showcaps=False,
patch_artist=True,
medianprops={'linewidth': 1.0},
boxprops={'linewidth': 1.0, 'edgecolor': colors[0],
'facecolor': colors[1], 'alpha': 0.3},
whiskerprops={'linewidth': 0})
for idx in range(len(colors)):
box['boxes'][idx].set_facecolor(colors[idx])
box['boxes'][idx].set_edgecolor(colors[idx])
box['means'][idx].set_markersize(5)
box['means'][idx].set_markerfacecolor(colors[idx])
box['medians'][idx].set_color(colors[idx])
plt.yticks([0.0, 0.25, 0.50], ['0\%', '25\%', '50\%'])
plt.xticks([1, 2, 3], [r'\textsc{TPPRL}', r'\textsc{Memorize}', 'Uniform'])
plt.tight_layout()
format_axes(plt.gca())
plot_base = './output-plots/'
os.makedirs(plot_base, exist_ok=True)
plt.savefig(os.path.join(plot_base, 'recall-results-{}-{}.pdf'.format(T, tau)),
bbox_inches='tight', pad_inches=0)
# Plotting item difficulty
plt.figure()
latexify(fig_width=2.25, largeFonts=False)
colors = sns.color_palette(n_colors=3)
Y = {
'RL': [scenario_opts['n_0s'][item] for x in RL_test_scens for item in x.items],
'MEM': [scenario_opts['n_0s'][item] for x in rets_mem for item, _ in x['review_timings']],
'Uniform': [scenario_opts['n_0s'][item] for x in rets_unif for item, _ in x['review_timings']]
}
box = plt.boxplot([Y['RL'], Y['MEM'], Y['Uniform']],
whis=0,
showmeans=True,
showfliers=False,
showcaps=False,
patch_artist=True,
medianprops={'linewidth': 1.0},
boxprops={'linewidth': 1.0, 'edgecolor': colors[0],
'facecolor': colors[1], 'alpha': 0.3},
whiskerprops={'linewidth': 0})
for idx in range(len(colors)):
box['boxes'][idx].set_facecolor(colors[idx])
box['boxes'][idx].set_edgecolor(colors[idx])
box['means'][idx].set_markersize(5)
box['means'][idx].set_markerfacecolor(colors[idx])
box['medians'][idx].set_color(colors[idx])
plt.xticks([1, 2, 3], [r'\textsc{TPPRL}', r'\textsc{Memorize}', 'Uniform'])
plt.tight_layout()
format_axes(plt.gca())
plt.savefig(os.path.join(plot_base, 'item-difficulty.pdf'), bbox_inches='tight', pad_inches=0)
# Plotting reviews per day
RL_times = [np.floor(t) for s in RL_test_scens for t in np.cumsum(s.time_deltas)]
MEM_times = [np.floor(t) for x in rets_mem for _, t in x['review_timings']]
plt.figure()
latexify(fig_width=2.25, largeFonts=False)
c1, c2 = sns.color_palette(n_colors=2)
f, (a1, a2) = plt.subplots(2, 1)
a1.hist(RL_times, bins=np.arange(T + 1), density=True, color=c1, alpha=0.5, label='RL')
a1.set_yticks([.04, .08])
a1.set_yticklabels([r'4\%', r'8\%'])
a1.set_ylabel('TPPRL')
a1.set_ylim([0.04, 0.08])
a1.set_xticks([0.5, 3.5, 6.5, 9.5, 13.5])
a1.set_xticklabels([1, 4, 7, 10, 14])
format_axes(a1)
a2.hist(MEM_times, bins=np.arange(T + 1), density=True, color=c2, alpha=0.5, label=r'\textsc{Mem}')
a2.set_yticks([0, .04, .08], [r'0\%', r'4\%', r'8\%'])
a2.set_xticks([0.5, 3.5, 6.5, 9.5, 13.5])
a2.set_xticklabels([1, 4, 7, 10, 14])
a2.set_ylabel(r'\textsc{Memorize}')
a2.set_ylim([0.04, 0.08])
a2.set_yticks([.04, .08])
a2.set_yticklabels([r'4\%', r'8\%'])
format_axes(a2)
# plt.legend(ncol=2, bbox_to_anchor=(0, 0, 1, 1.1))
plt.tight_layout()
plt.savefig(os.path.join(plot_base, 'reviews-every-day.pdf'), bbox_inches='tight', pad_inches=0)
print(_now(), 'Done.')
if __name__ == '__main__':
cmd()