-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
102 lines (83 loc) · 2.51 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from dataclasses import dataclass
from typing import Optional, Tuple
@dataclass
class ModelConfig:
# Model Architecture
num_classes: int = 4
pretrained_path: str = "medsam_vit_b.pth"
freeze_encoder: bool = False
# Image settings
image_size: Tuple[int, int] = (128, 128)
in_channels: int = 1
# Attention settings
attention_channels: int = 32
se_reduction: int = 16
# UNet settings
unet_features: int = 64
unet_levels: int = 4
@dataclass
class TrainingConfig:
# Basic training settings
batch_size: int = 1
num_workers: int = 6
epochs: int = 100
learning_rate: float = 1e-3
weight_decay: float = 1e-4
# Optimizer settings
beta1: float = 0.9
beta2: float = 0.99
# Learning rate scheduling
lr_schedule_factor: float = 0.95
lr_schedule_patience: int = 10
# Gradient accumulation
accumulation_steps: int = 4
# Hardware settings
gpu_id: str = "0"
use_amp: bool = True # Automatic Mixed Precision
@dataclass
class DataConfig:
# Data paths
data_path: str = "../Segmentation_LGE/Data"
train_path: str = "Training"
test_path: str = "Testing"
x_folder: str = "Mag_image"
y_folder: str = "4layer_mask"
# Data processing
normalize: bool = True
augment: bool = True
# Train-test split
test_size: float = 0.25
random_seed: int = 42
@dataclass
class Config:
model: ModelConfig = ModelConfig()
training: TrainingConfig = TrainingConfig()
data: DataConfig = DataConfig()
# Logging and checkpoints
checkpoint_dir: str = "checkpoints"
log_dir: str = "logs"
save_frequency: int = 5
# Output visualization
visualize_results: bool = True
max_visualizations: int = 10
def __post_init__(self):
import os
os.makedirs(self.checkpoint_dir, exist_ok=True)
os.makedirs(self.log_dir, exist_ok=True)
@classmethod
def from_dict(cls, config_dict: dict) -> 'Config':
"""Create config from dictionary."""
return cls(
ModelConfig(**config_dict.get('model', {})),
TrainingConfig(**config_dict.get('training', {})),
DataConfig(**config_dict.get('data', {}))
)
def to_dict(self) -> dict:
"""Convert config to dictionary."""
return {
'model': self.model.__dict__,
'training': self.training.__dict__,
'data': self.data.__dict__
}
# Default configuration instance
config = Config()