-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconstants.py
176 lines (155 loc) · 4.75 KB
/
constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""
Constants file
"""
from torch.cuda import is_available as cuda_available
SEED = 444
# Tokenizer params (same as MidiTok expect for new constants)
PITCH_RANGE = range(21, 109)
BEAT_RES = {(0, 1): 8, (1, 2): 4, (2, 4): 2, (4, 8): 1}
NB_VELOCITIES = 8
ADDITIONAL_TOKENS = {'Chord': False, 'Rest': False, 'Tempo': False, 'Program': False, 'TimeSignature': False,
'rest_range': (2, 8), 'nb_tempos': 32, 'tempo_range': (40, 250), 'time_signature_range': (8, 2)}
SPECIAL_TOKENS = ["PAD", "MASK", "BOS", "EOS", "SEP"]
TOKENIZER_PARAMS = {'pitch_range': PITCH_RANGE, 'beat_res': BEAT_RES, 'nb_velocities': NB_VELOCITIES,
'additional_tokens': ADDITIONAL_TOKENS, "special_tokens": SPECIAL_TOKENS}
TIME_DIVISION = 384
DATA_AUGMENTATION_OFFSETS = (2, 1, 0)
BPE_NB_FILES_LIM = 5000
VOCAB_SIZE_BPE_GEN = 2000
VOCAB_SIZE_BPE_CLA = 5000 # also for CON
VOCAB_SIZE_BPE_TCP = 0
# For classification
NOTE_DENSITY_RANGE = range(0, 13) # in notes per beat
# For transcription
SAMPLE_RATE = 16000
N_FFT = 2048
WIN_LENGTH = 2048
HOP_WIDTH = 128
N_MELS = 512
SAFE_LOG_EPS = 1e-4
ONSET_TOLERANCE = 1
TEMPO = 120
# Transformer config (for classification and contrastive)
MODEL_DIM = 768
MODEL_NB_HEADS = 12
MODEL_D_FFWD = MODEL_DIM * 4
MODEL_NB_LAYERS = 12
MODEL_NB_POS_ENC_PARAMS = 2048 # params for positional encoding positions
# Transformer config (for transcription)
TCP_DIM = 512
TCP_D_KV = 64
TCP_NB_HEADS_ENCODER = 8
TCP_NB_HEADS_DECODER = 8
TCP_D_FFWD = TCP_DIM * 4
TCP_NB_LAYERS_ENCODER = 8
TCP_NB_LAYERS_DECODER = 8
TCP_NB_POS_ENC_PARAMS = 2048
# COMMON TRAINING PARAMS
DROPOUT = 0.1
EVAL_ACCUMULATION_STEPS = None # to use in case of CUDA OOM during eval
WEIGHT_DECAY = 0.01
GRADIENT_CLIP_NORM = 3.0
LABEL_SMOOTHING = 0.0
VALID_SPLIT = 0.10
TEST_SPLIT = 0.15
USE_CUDA = True
USE_AMP = True
USE_GRADIENT_CHECKPOINTING = True
DDP_FIND_UNUSED_PARAMETERS = False
DDP_BUCKET_CAP_MB = None # default to 25mb
VALID_INTVL = 1000
LOG_STEPS_INTVL = 20
SAVE_STEPS = 1000
SAVE_TOTAL_LIMIT = 1
WARMUP_RATIO = 0.3
# TRAINING PARAMS GEN
BATCH_SIZE_GEN = 24
GRAD_ACC_STEPS_GEN = 2
MIN_SEQ_LEN_GEN = 384
MAX_SEQ_LEN_GEN = 512
TRAINING_STEPS_GEN = 50000
LEARNING_RATE_GEN = 1e-4
LR_SCHEDULER_GEN = 'cosine_with_restarts'
# TRAINING PARAMS PRETRAINING
BATCH_SIZE_PT = 48
GRAD_ACC_STEPS_PT = 1
MIN_SEQ_LEN_PT = 384
MAX_SEQ_LEN_PT = 512
TRAINING_STEPS_PT = 100000
LEARNING_RATE_PT = 1e-4
LR_SCHEDULER_PT = 'cosine_with_restarts'
MASK_RATIO_CLA_PT = 0.15
# TRAINING PARAMS CLA FT
BATCH_SIZE_CLA_FT = 48
GRAD_ACC_STEPS_CLA = 1
MIN_SEQ_LEN_CLA_FT = 384
MAX_SEQ_LEN_CLA_FT = 512
TRAINING_STEPS_CLA_FT = 50000
LEARNING_RATE_CLA_FT = 3e-5
LR_SCHEDULER_CLA = 'cosine_with_restarts'
# TRAINING PARAMS CONTRASTIVE
BATCH_SIZE_CON = 48
GRAD_ACC_STEPS_CON = 1
MIN_SEQ_LEN_CON = 384
MAX_SEQ_LEN_CON = 512
LEARNING_RATE_CON = 3e-5
TRAINING_STEPS_CON = 50000
LR_SCHEDULER_CON = 'cosine_with_restarts'
POOLER_TYPE_CON = "cls"
TEMPERATURE_CON = 0.05
# TRAINING PARAMS TRANSCRIPTION
BATCH_SIZE_TCP = 128
GRAD_ACC_STEPS_TCP = 1
SEQ_LEN_ENCODER_TCP = 512
MIN_SEQ_LEN_DECODER_TCP = 32
MAX_SEQ_LEN_DECODER_TCP = 256
LEARNING_RATE_TCP = 3e-4
TRAINING_STEPS_TCP = 50000
LR_SCHEDULER_TCP = 'cosine_with_restarts'
USE_AMP_TCP = False
# TEST PARAMS GEN
NB_INFERENCES_GEN = 512
MIN_SEQ_LEN_TEST_GEN = 256
MAX_SEQ_LEN_TEST_GEN = 512
BATCH_SIZE_TEST_GEN = 92
NUM_BEAMS = 1 # in practice the generation will use a batch size = BATCH_SIZE_TEST * NUM_BEAMS
TEMPERATURE_SAMPLING = 1.
TOP_K = 15
TOP_P = 0.95
EPSILON_CUTOFF = None
ETA_CUTOFF = None
# TEST PARAMS CLA
MIN_SEQ_LEN_TEST_CLA = 384
MAX_SEQ_LEN_TEST_CLA = 512
BATCH_SIZE_TEST_CLA = 32
# TEST PARAMS CON
MIN_SEQ_LEN_TEST_CON = 384
MAX_SEQ_LEN_TEST_CON = 512
BATCH_SIZE_TEST_CON = 32
AUGMENTATIONS_TESTS_CON = {"pitch_+1": (1, 0, 0),
"pitch_+2": (2, 0, 0),
"pitch_+12": (12, 0, 0),
"pitch_+24": (24, 0, 0),
"pitch_-1": (-1, 0, 0),
"pitch_-2": (-2, 0, 0),
"pitch_-12": (-12, 0, 0),
"pitch_-24": (-24, 0, 0),
"velocity_+1": (0, 1, 0),
"velocity_+2": (0, 2, 0),
"velocity_-1": (0, -1, 0),
"velocity_-2": (0, -2, 0),
"pitch_+12_velocity_+1": (12, 1, 0)}
# TEST PARAMS TCP
MIN_SEQ_LEN_DECODER_TEST_TCP = 384
MAX_SEQ_LEN_DECODER_TEST_TCP = 512
BATCH_SIZE_TEST_TCP = 192
# EXCEPTION ARGUMENTS EMOTION
MIN_SEQ_LEN_CLA_EMOTION = 100
MAX_SEQ_LEN_CLA_EMOTION = 256
MIN_SEQ_LEN_TEST_CLA_EMOTION = 100
MAX_SEQ_LEN_TEST_CLA_EMOTION = 256
TRAINING_STEPS_PT_EMOTION = 40000
TRAINING_STEPS_CLA_FT_EMOTION = 15000
# in case no GPU is available
if not cuda_available():
USE_AMP = USE_CUDA = False