-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlinear_algebra.tex
4160 lines (3581 loc) · 150 KB
/
linear_algebra.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[a4paper]{article}
\def\npart{IB}
\def\ntitle{Linear Algebra}
\def\nlecturer{A.\ M.\ Keating}
\def\nterm{Michaelmas}
\def\nyear{2017}
\input{header}
\newcommand*{\M}{\matrixring}
\newcommand*{\spans}{\generation}
\newcommand*{\ann}{\circ}
\newcommand*{\basis}{\mathcal}
\newcommand*{\ip}{\innerproduct}
\theoremstyle{definition}
\newtheorem*{caution}{Caution}
\begin{document}
\input{titlepage}
\tableofcontents
\section{Vector Space}
\begin{convention}
Throughout this course, $\mathbb{F}$ denotes a general field. If you wish, think of it as $\mathbb{R}$ or $\mathbb{C}$.
\end{convention}
\subsection{Definitions}
\begin{definition}[Vector space]\index{vector space}
An $\mathbb{F}$-\emph{vector space} (or a vector space over $\mathbb{F}$) is an abelian group $(V, +)$ equipped with a function, called \emph{scalar multiplication}:
\begin{align*}
\mathbb{F}\times V &\to V \\
(\lambda, v) &\mapsto \lambda\cdot v
\end{align*}
satisfying the axioms
\begin{itemize}
\item distributive over vectors: $\lambda(v_1+v_2) = \lambda(v_1+v_2)$,
\item distributive over scalars: $(\lambda_1+\lambda_2)v= \lambda_1 v+\lambda_2 v$,
\item $\lambda(\mu v) = \lambda \mu v$,
\item $1\cdot v = v$.
\end{itemize}
\end{definition}
The additive unit of $V$ is denoted by $\V 0$.
\begin{eg}\leavevmode
\label{eg:matrix as V}
\begin{enumerate}
\item For all $n \in \mathbb{N}, \mathbb{F}^n$ is the space of column vectors of length $n$ with entries in $\mathbb{F}$. It is an vector space by entry-wise addition and entry-wise scalar multiplication.
\item $\M_{m,n}(\mathbb{F})$, the set of $m\times n$ matrices with entries in $\mathbb{F}$, with the operation defined as entry-wise addition.
\item For any set $X$, $\mathbb{R}^X = \{f: X \to \mathbb{R}\}$, the set of $\mathbb{R}$-valued functions on $X$, with addition and scalar multiplication defined pointwise. For instance, $(f_1+f_2)(x) = f_1(x)+f_2(x)$.
\end{enumerate}
\end{eg}
\begin{ex}\leavevmode
\begin{enumerate}
\item Check the above examples satisfy the axioms.
\item $0\cdot v = \V 0$ and $(-1)\cdot v = -v$ for all $v \in V$.
\end{enumerate}
\end{ex}
\subsection{Vector Subspace}
\begin{definition}[Vector subspace]\index{vector space!subspace}
Let $V$ be an $\mathbb{F}$-vector space. A subset $U \subseteq V$ is a \emph{subspace}, denoted $U \leq V$, if
\begin{itemize}
\item $\V 0 \in U$,
\item $U$ is closed under addition: $\forall u_1, u_2 \in U, u_1+u_2 \in U$,
\item $U$ is closed under scalar multiplication: $\forall u \in U, \forall \lambda \in \mathbb{F}, \lambda u \in U$.
\end{itemize}
\end{definition}
\begin{ex}
If $U$ is a subspace of $V$, then $U$ is also an $\mathbb{F}$-vector space.
\end{ex}
\begin{eg}\leavevmode
\begin{enumerate}
\item $V = \mathbb{R}^{\mathbb{R}}$, the set all functions from $\mathbb{R}$ to itself, has a (proper) subspace $C(\mathbb{R})$, the space of continuous functions on $\mathbb{R}$ as continuous functions are closed under addition and scalar multiplication. $C(\mathbb{R})$ in turn has a proper subspace $P(\mathbb{R})$, the set of all polynomials in $\mathbb{R}$.
\item $\{(x_1,x_2,x_3) \in \mathbb{R}^3: x_1+x_2+x_3 = t\}$ where $t$ is some fixed constant is a subspace of $\mathbb{R}^3$ if and only if $t = 0$.
\end{enumerate}
\end{eg}
\begin{proposition}
Let $V$ be an $\mathbb{F}$-vector space, $U, W \leq V$. Then $U \cap W \leq V$.
\end{proposition}
\begin{proof}\leavevmode
\begin{itemize}
\item $\V 0 \in U, \V 0 \in V$ so $\V 0 \in U \cap W$.
\item Suppose $u, w \in U \cap W$. Fix $\lambda, \mu \in \mathbb{F}$. As $U \leq V$, $\lambda u + \mu w \in U$. As $W \leq V$, $\lambda u +\mu w \in W$ so $\lambda u + \mu w \in U \cap W$. Take $\lambda = \mu = 1$ for vector addition and $\mu = 0$ for scalar multiplication.
\end{itemize}
\end{proof}
\begin{eg}
$V = \mathbb{R}^3, U = \{(x,y,z): x=0\}, W=\{(x,y,z):y=0\}$, then $U\cap W=\{(x,y,z):x=y=0\}$.
\end{eg}
\begin{note}
The union of a family of subspaces is \emph{almost never} a subspace. For example, $V = \mathbb{R}^2$, $U, V$ be $x$- and $y$-axis.
\end{note}
\begin{definition}[Sum of vector spaces]\index{vector space!sum}
Let $V$ be an $\mathbb{F}$-vector space, $U, W \leq V$, the \emph{sum} of $U$ and $W$ is the set
\[
U + W = \{u+w: u\in U, w\in W\}
\]
\end{definition}
\begin{eg}
Use the definition from the previous example, $U+W=V$.
\end{eg}
\begin{proposition}
$U+W \leq V$.
\end{proposition}
\begin{proof}\leavevmode
\begin{itemize}
\item $\V 0 = \V 0 + \V 0 \in U+W$,
\item $u_1,u_1\in U, w_1,w_2\in W$, $(u_1+w_2) + (u_2+w_2) = (u_1+u_2)+(w_1+w_2) \in U+W$,
\item similar for scalar multiplication. Left as an exercise.
\end{itemize}
\end{proof}
\begin{note}
$U+W$ is the smallest subspace containing both $U$ and $W$. This is because all elements of the form $u+w$ are in such a space by closure under addition.
\end{note}
\begin{definition}[Quotient vector space]\index{vector space!quotient}
Let $V$ be an $\mathbb{F}$-vector space, $U \leq V$. The \emph{quotient space} $V/U$ is the abelian gropup $V/U$ equipped with scalar multiplication
\begin{align*}
\mathbb{F} \times V/U &\to V/U \\
(\lambda, v+U) &\mapsto \lambda v+U
\end{align*}
\end{definition}
\begin{proposition}
This is well-defined and $V/U$ is an $\mathbb{F}$-vector space.
\end{proposition}
\begin{proof}
First check it is well-defined. Suppose $v_1+U= v_2+U \in V/U$. Then $v_1-v_2\in U$. Now use closure under scalar multiplication and distributivity, $\lambda v_1 - \lambda v_2 = \lambda(v_1-v_2)\in U$ so $\lambda v_1 + U = \lambda v_2 +U\in V/U$.
Now check vector space axioms of $V/U$, which will follow from the axioms for $V$:
\begin{itemize}
\item $\lambda(\mu(v+U)) = \lambda(\mu v+U) = \lambda(\mu v)+U = (\lambda\mu) v+U = \lambda\mu(v+U)$,
\item other axioms are left as an exercise.
\end{itemize}
\end{proof}
\subsection{Span, Linear Independence \& Basis}
\begin{definition}[Span]\index{span}
Let $V$ be a $\F$-vector space, $S \subseteq V$ be a subset. The \emph{span} of $S$
\[
\spans S = \Big\{\sum_{s\in S} \lambda_s s : \lambda_s \in \F \Big\}
\]
is the set of all the finite linear combinations of elements (i.e.\ all but finitely many of the $\lambda$ are zero) of $S$.
\end{definition}
\begin{remark}
$\spans S$ is the smallest subspace of $V$ containing all elements of $S$.
\end{remark}
\begin{convention}
$\spans \emptyset = \{\V 0\}$
\end{convention}
\begin{eg}\leavevmode
\begin{enumerate}
\item $V=\R^3$, $S = \{(1,0,0),(0,1,2),(3,-2,-4)\}$, $\spans S = \{(a,b,2b): a,b\in \R \}$
\item For any set $X$, $\R^X$ is a vector space. For $x \in X$, define $\delta_x: X \to \R, \delta_x(x) = 1, \delta_x(y) = 0 \: \forall y \neq x$, then
\[
\spans{\delta_x: x\in X} = \{f\in \R^X: f \text{ has finite support} \}
\]
\end{enumerate}
\end{eg}
\begin{definition}[Span]
$S$ spans $V$ if $\spans S = V$.
\end{definition}
\begin{definition}[Finite-dimensional]\index{finite-dimensional}
$V$ is \emph{finite-dimensional} over $\F$ if it is spanned by a finite set.
\end{definition}
\begin{definition}[Linear independence]\index{linear independence}
The vectors $v_1,\ldots, v_n$ are \emph{linearly independent} over $\F$ if
\[
\sum_{i=1}^n \lambda_i = 0 \Rightarrow \lambda_i = 0 \: \forall i
\]
A subset $S \subseteq V$ is \emph{linearly independent} if every finite subset of $S$ is linearly independent.
A subset is \emph{linearly dependent} if it is not linearly independent.
\end{definition}
\begin{eg}
In the first example above, the three vectors are not linearly independent.
\end{eg}
\begin{ex}
The set $\{\delta_x: x \in X\}$ is linearly independent.
\end{ex}
\begin{definition}[Basis]\index{basis}
$S$ is a \emph{basis} of $V$ if it is linearly independent and spans $V$.
\end{definition}
\begin{eg}\leavevmode
\begin{enumerate}
\item $\F^n$ has standard basis $\{e_1,e_2,\ldots,e_n\}$ where $e_i$ is the column vector with $1$ in the $i$th entry and $0$ elsewhere.
\item $V=\C$ over $\C$ has natural basis $\{1\}$, but over $\R$ it has natural basis $\{1, i\}$.
\item $V=P(\R)$, the space of real polynomials, has natural basis
\[
\{1, x, x^2, \dots \}.
\]
It is an exercise to check this carefully.
\end{enumerate}
\end{eg}
\begin{lemma}
Let $V$ be a $\F$-vector space. The vectors $v_1,\ldots,v_n$ form a basis of $V$ if and only if each vector $v\in V$ has a unique expression
\[
v = \sum_{i=1}^n \lambda_i v_i, \lambda_i \in \F.
\]
\end{lemma}
\begin{proof}\leavevmode
\begin{itemize}
\item $\Rightarrow:$ Fix $v\in V$. The $v_i$ span $V$, so exists $\lambda_i \in \F$ such that $v = \sum \lambda_i v_i$. Suppose also $v = \sum \mu_i v_i$ for some $\mu_i \in \F$. Then the difference
\[
\sum (\mu_i - \lambda_i) v_i = \V 0.
\]
Since the $v_i$ are linearly independent, $\mu_i-\lambda_i = 0$ for all $i$.
\item $\Leftarrow:$ The $v_i$ span $V$ by assumption. Suppose $\sum_{i=1}^n \lambda_i v_i = \V 0$. Note that $\V 0 = \sum_{i=0}^n 0 \cdot v_i$. By appying uniqueness to $\V 0$, $\lambda_i = 0$ for all $i$.
\end{itemize}
\end{proof}
\begin{lemma}
If $v_1,\ldots, v_n$ spans $V$ over $\F$, then some subset of $v_1,\ldots,v_n$ is a basis of $V$ over $\F$.
\end{lemma}
\begin{proof}
If $v_1,\ldots, v_n$ is linearly independent then done. Otherwise for some $\ell$, there exist $\alpha_1, \ldots, \alpha_{\ell-1} \in \F$ such that
\[
v_\ell = \sum_{i=1}^{\ell-1} \alpha_i v_i.
\]
(If $\sum \lambda_i v_i = 0$, not all $\lambda_i$ is zero. Take $\ell$ maximal with $\lambda_\ell \neq 0$, then $\alpha_i = -\frac{\lambda_i}{\lambda_\ell}$.)
Now $v_1,\ldots,v_{\ell-1},v_{\ell+1},\ldots,v_n$ still span $V$. Continue iteratively until we have linear independence.
\end{proof}
\begin{theorem}[Steinitz Exchange Lemma]
Let $V$ be a finite-dimensional vector space over $\F$. Take $v_1,\ldots,v_m$ to be linearly independent, $w_1,\ldots,w_n$ to span $V$. Then
\begin{itemize}
\item $m \leq n$, and
\item reordering the $w_i$ if needed, $v_1,\ldots, v_m, w_{m+1},\ldots,w_n$ spans $V$.
\end{itemize}
\end{theorem}
\begin{proof}
Proceed by induction. Suppose that we have replaced $\ell \geq 0$ of the $w_i$. Reordering $w_i$ if needed, $v_1,\ldots,v_\ell,w_{\ell+1},\ldots,w_n$ spans $V$.
\begin{itemize}
\item If $\ell = m$, done.
\item If $\ell < m$, then $v_{\ell+1} = \sum_{i=1}^\ell \alpha_i v_i + \sum_{i> \ell} \beta_i w_i$. As the $v_i$ are linearly independent, $\beta_i \neq 0$ for some $i$. After reordering, $\beta_{\ell+1} \neq 0$,
\[
w_{\ell+1} = \frac{1}{\beta_{\ell+1}} (v_{\ell+1}-\sum_{i\leq \ell} \alpha_i v_i - \sum_{i>\ell+1} \beta_i w_i).
\]
Thus $v_1,\ldots, v_\ell, v_{\ell+1},w_{\ell+2},\ldots, w_n$ also spans $V$. After $m$ steps, we will replace $m$ of the $w_i$ by $v_i$. Thus $m \leq n$.
\end{itemize}
\end{proof}
\subsection{Dimension}
\begin{theorem}
If $V$ is a finite-dimensional vector space over $\F$, then any two bases for $V$ have the same cardinality, which is called the \emph{dimension} of $V$, donoted $\dim_\F V$.
\end{theorem}
\begin{proof}
If $v_1,\ldots, v_n$ and $w_1,\ldots,w_m$ are both bases, then $\{v_i\}$ is linearly independent and $\{w_i\}$ spans $V$ so $n \leq m$. Similarly $m \leq n$.
\end{proof}
\begin{eg}
$\dim_\C \C = 1$, but $\dim_\R \C = 2$.
\end{eg}
\begin{lemma}
Let \(V\) be a finite-dimensional \(\F\)-vector space. If \(w_1,\ldots,w_\ell\) is a linearly independent set of vectors, we can extend it to a basis \(w_1,\ldots,w_\ell,w_{\ell+1},\ldots,w_n\).
\end{lemma}
\begin{proof}
Apply Steinitz exchange lemma to \(w_1,\ldots, w_\ell\) and any basis \(v_1,\ldots, v_n\).
Or more direcly, if \(V=\langle w_1,\ldots, w_\ell \rangle\), done. Otherwise take \(v_{\ell+1} \in V\setminus\langle w_1,\ldots, w_\ell\rangle\). Now \(w_1,\ldots, w_\ell,w_{\ell+1}\) is linearly independent. Iterate.
\end{proof}
\begin{corollary}
Let \(V\) be a finite-dimensional vector space of dimension \(n\). Then
\begin{enumerate}
\item Any linearly independent set of vectors has at most \(n\) elements, with equality if and only if the set is a basis.
\item Any spanning set of vectors has at least \(n\) elements, with equaility if and only if the set is a basis.
\end{enumerate}
\end{corollary}
\begin{slogan}
Choose the best basis for the job.
\end{slogan}
\begin{theorem}
Let \(U, W\) be subspaces of \(V\). If \(V\) and \(W\) are finite-dimensional, so is \(U+W\) and
\[
\dim(U+W) = \dim U + \dim W - \dim(U\cap W).
\]
\end{theorem}
\begin{proof}
Pick basis \(v_1,\ldots, v_\ell\) of \(U\cap W\). Extend it to basis \(v_1,\ldots,v_\ell,u_1,\ldots,u_m\) of \(U\) and \(v_1,\ldots,v_\ell,w_1,\ldots,w_n\) of \(W\). Claim \(v_1,\ldots, v_\ell,u_1,\ldots,u_m,w_1,\ldots,w_n\) is a basis for \(U+W\):
\begin{itemize}
\item spanning: if \(u\in U\), then \(u= \sum \alpha_iv_i + \sum \beta_iu_i\) and if \(w\in W\), \(w = \sum_{}^{}\gamma_iv_i + \sum_{}^{}\delta_iw_i\), so \(u+w = \sum_{}^{}(\alpha_i + \gamma_i)v_i + \sum_{}^{}\beta_iu_i + \sum_{}^{}\delta_iu_i\).
\item linear independence: assume \(\sum \alpha_iv_i + \sum \beta_iu_i+ \sum \gamma_iw_i=0\). Rearrange, \(\sum\alpha_iv_i + \sum\beta_iu_i = -\sum\gamma_iw_i \in U\cap W\) so it equals to \(\sum\delta_iv_i\) for some \(\delta_i\in \F\) because \(v_i\) is a basis for \(U\cap W\). As \(v_i\) and \(w_i\) are linearly independent, \(\gamma_i=\delta_i=0\) for all \(i\). Thus \(\sum\alpha_iv_i + \sum\beta_iv_i=0\), so \(\alpha_i=\beta_i=0\) since \(v_i\) and \(u_i\) form a basis for \(U\).
\end{itemize}
\end{proof}
\begin{theorem}
Let \(V\) be a finite-dimensional vector space over \(\F\) and \(U \leq V\), then \(U\) and \(V/U\) are also finite-dimensional and
\[
\dim V = \dim U + \dim V/U.
\]
\end{theorem}
\begin{proof}
Left as an exercise. Outline: first show \(U\) is finite-dimensional, then let \(u_1,\ldots,u_\ell\) be a basis for \(U\). Extend it to a basis for \(V\), say \(u_1,\ldots,u_\ell,w_{\ell+1},\ldots,w_n\) of \(V\). Check \(w_{\ell+1}+U,\ldots,w_n+U\) form a basis for \(V/U\).
\end{proof}
\begin{corollary}
If \(U\) is a proper subspace of \(V\), which is finite-dimensional, then \(\dim U < \dim V\).
\end{corollary}
\begin{proof}
\(V/U \neq 0\) so \(\dim V/U > 0\).
\end{proof}
\subsection{Direct Sum}
\begin{definition}[Direct sum]\index{vector space!sum!direct}
Let \(V\) be a vector space over \(\F\), \(U, W\leq V\). Then
\[
V = U \oplus W
\]
if every element of \(V\) can be written as \(v=u+w\) for some unique \(u\in U, w\in W\). This is called the \emph{internal direct sum}. \(W\) is a \emph{direct complement} of \(U\) in \(V\).
\end{definition}
\begin{lemma}
Suppose \(U,W\leq V\), TFAE:
\begin{enumerate}
\item \(V = U \oplus W\),
\item \(V=U+W\) and \(U\cap W = 0\),
\item Given \(\basis B_1\) any basis of \(U\), \(\basis B_2\) any basis of \(V\), \(\basis B_1 \cap \basis B_2 = \emptyset\) and \(\basis B = \basis B_1\cup \basis B_2\) is a basis of \(V\).
\end{enumerate}
\end{lemma}
\begin{proof}\leavevmode
\begin{itemize}
\item \(2 \Rightarrow 1\): any \(v\in V\) is \(u+w\) for some \(u\in U, w\in W\). Suppose \(u_1+w_1=u_2+w_2\), then \(u_1-u_2 = w_2-w_1 \in U\cap W = 0\). Thus \(u_1=u_2,w_1=w_2\).
\item \(1 \Rightarrow 3\): \(\basis B\) spans as any \(v\in V\) is \(u+w\). Write \(u\) in terms of \(\basis B_1\) and \(w\) in terms of \(\basis B_2\). Then \(u+w\) is a linear combination of elements of \(\basis B\). To show \(\basis B\) is linearly independent, suppose \(\sum_{v\in \basis B} \lambda_v v = \V 0 = \V 0_V + \V 0_W\). Write LHS as \(\sum_{v\in \basis B_1} \lambda_vv + \sum_{v\in \basis B_2}\lambda_vv\). By uniqueness of expression, \(\sum_{v\in \basis B_1}\lambda_vv=\V 0_V\) and \(\sum_{w\in \basis B_2}\lambda_ww=\V 0_w\). As \(\basis B_1, \basis B_2\) are bases, all of the \(\lambda_v, \lambda_w\) are zero.
\item \(3 \Rightarrow 2\): if \(v\in V, v=\sum_{x\in V}\lambda_xx = \sum_{u\in \basis B_1}\lambda_uu + \sum_{w\in \basis B_1}\lambda_ww\) so \(v\in U+W\). Conversely, if \(v\in U\cap W, v = \sum_{u\in \basis B_1}\lambda_uu=\sum_{w\in \basis B_2}\lambda_ww\) so all \(\lambda_u, \lambda_v\) are zero since \(\basis B_1\cup \basis B_2\) is linearly independent.
\end{itemize}
\end{proof}
\begin{lemma}
Let \(V\) be a finite-dimensional vector space over \(\F\) and \(U\leq V\). Then there exists a direct complement to \(U\) in \(V\).
\end{lemma}
\begin{proof}
Let \(u_1,\ldots, u_\ell\) be a basis for \(U\). Extend this to a basis \(u_1,\ldots, u_\ell,w_{\ell+1},\ldots,w_n\) for \(V\). Then \(\spans{w_{\ell+1},\ldots,w_n}\) is a direct complement of \(U\).
\end{proof}
\begin{caution}
Direct complements are \emph{not} unique.
\end{caution}
\begin{definition}[Direct sum]\index{vector space!direct sum}
Suppose \(V_1,\ldots, V_\ell \leq V\), then the sum
\[
\sum_i V_i = V_1+\cdots+V_\ell = \{v_1+\cdots+v_\ell: v_i\in V_i\}.
\]
is \emph{direct} if
\[
v_1+\cdots+v_\ell = v_1'+\cdots+ v_\ell' \Rightarrow v_i = v_i' \text{ for all } i.
\]
In which case it is denoted
\[
V = \bigoplus_{i=1}^\ell V_i.
\]
\end{definition}
\begin{ex}
\(V_1,\ldots, V_\ell \leq V\), TFAE:
\begin{enumerate}
\item The sum \(\sum_i V_i\) is direct,
\item \(V_i \cap \sum_{j\neq i}V_j = 0\) for all \(i\),
\item For any basis \(B_i\) of \(V_i\), the union \(B=\bigcup_{i=1}^\ell B_i\) is a basis for \(\sum_i V_i\).
\end{enumerate}
\end{ex}
\begin{definition}[Direct sum]\index{vector space!direct sum}
Let \(U, W\) be vector spaces over \(\F\). The \emph{external direct sum} is
\[
U\oplus W = \{(u,w): u\in U, w\in W\}
\]
with pointwise addition and scalar multiplication.
\end{definition}
\section{Linear Map}
\subsection{Definitions}
\begin{definition}[Linear map]\index{linear map}
\(V, W\) two \(\F\)-vector space, a map \(\alpha: V\to W\) is \emph{linear} if
\begin{itemize}
\item \(\alpha(v_1 + v_2) = \alpha(v_1) + \alpha(v_2)\),
\item \(\alpha(\lambda v) = \lambda \alpha(v)\).
\end{itemize}
This is equivalent to
\[
\alpha(\lambda_1v_1+ \lambda_2v_2) = \lambda_1\alpha(v_1) + \lambda_2\alpha(v_2).
\]
\end{definition}
\begin{eg}\leavevmode
\begin{enumerate}
\item Given an \(n\times m\) matrix \(A\) with coefficients in \(\F\), the map \(\alpha: \F^m\to \F^n, v\to Av\).
\item Differentiation \(D: P(\R) \to P(\R), f\mapsto \frac{df}{dx}\).
\item Integration \(I: C[0,1] \to C[0,1], f \mapsto I(f)\) where \(I(f)(x) = \int_0^x f(t)dt\).
\item Fix \(x\in [0,1]\), the map \(C[0,1]\to \R, f\mapsto f(x)\).
\end{enumerate}
\end{eg}
\begin{note}[Categoricity of \(\mathbf{Vect}_\F\)]
Suppose \(U, V, W\) are \(\F\)-vector spaces, then
\begin{enumerate}
\item \(\id: V\to V\) is linear.
\item Given \(U \stackrel{\alpha}{\to} V \stackrel{\beta}{\to} W\), if \(\alpha, \beta\) are linear then so is \(\beta \compose \alpha\).
\end{enumerate}
\end{note}
\begin{lemma}[Free functor \(\mathbf{Set} \to \mathbf{Vect}_\F\)]
Suppose \(V, W\) are \(\F\)-vector spaces and \(\basis B\) is a basis for \(V\). If \(\alpha_0: \basis B\to W\) is \emph{any} map, then there is a \emph{unique} linear map \(\alpha: V\to W\) extending \(\alpha_o\).
\end{lemma}
\begin{proof}
Let \(v\in V\). Write \(v = \sum \lambda_iv_i\) in a unique way. By linearity \(\alpha(v) = \alpha(\sum \lambda_iv_i) = \sum \lambda_i \alpha(v_i) = \sum \lambda_i \alpha_0(v_i)\). Uniqueness follows.
\end{proof}
\begin{note}\leavevmode
\begin{itemize}
\item This is true for infinite-dimensional vector spaces as well.
\item Very often, to define a linear map, define it on a basis and extend it linearly to the vector space.
\item Two linear maps \(\alpha_1,\alpha_2: V\to W\) are equal if and only if they agree on a basis.
\end{itemize}
\end{note}
\subsection{Isomorphism of Vector Spaces}
\begin{definition}[Isomorphism]\index{isomorphism}
Given \(V, W\) two \(\F\)-vector spaces, the map \(\alpha:V\to W\) is an \emph{isomorphism} if it is linear and bijective, denoted \(V \cong W\).
\end{definition}
\begin{lemma}
\(\cong\) is an equivalence relation on the class of all \(\F\)-vector spaces.
\end{lemma}
\begin{proof}\leavevmode
\begin{itemize}
\item symmetric: obvious.
\item reflexive: blah blah in lecture. Left as an exercise to reader.
\item transitive: obvious.
\end{itemize}
\end{proof}
\begin{theorem}
If \(V\) is an \(\F\)-vector space, then \(V \cong \F^n\) for some \(n\).
\end{theorem}
\begin{proof}
Choose a basis for \(V\), say \(v_1,\ldots, v_n\). Define a map
\begin{align*}
V &\to \F^n \\
\sum_{i}^{ }\lambda_iv_i &\mapsto (\lambda_1,\ldots,\lambda_n)
\end{align*}
which is an isomorphism.
\end{proof}
\begin{remark}
Choosing an isomorphism \(V \cong \F^n\) is equivalent to choosing a basis for \(V\), i.e.\ there is a bijection
\[
\{\alpha\in\Hom(V,\F^n), \alpha\text{ bijective}\} \leftrightarrow \{\text{bases of } V\}.
\]
\end{remark}
\begin{theorem}
Given two finite-dimensional \(\F\)-vector spaces \(V, W\), they are isomorphic if and only if they have the same dimension.
\end{theorem}
\begin{proof}\leavevmode
\begin{itemize}
\item \(\Leftarrow\): \(V \cong \F^{\dim V} = \F^{\dim W} \cong W\).
\item \(\Rightarrow\): let \(a:V\to W\) be an isomorphism and \(\basis B\) be a basis for \(V\). Claim \(\alpha(\basis B)\) is a basis for \(W\): \(\alpha(\basis B)\) spans \(W\) due to surjectivity and \(\alpha(\basis B)\) is linearly independent due to injectivity.
\end{itemize}
\end{proof}
\begin{definition}[Kernel \& Image]\index{linear map!kernel}\index{linear map!image}
Given \(\alpha: V\to W\),
\begin{itemize}
\item \(N(\alpha) = \ker \alpha = \{v\in V: \alpha(v) = 0\} \leq V\),
\item \(\im \alpha = \{w\in W: \exists v\in V, \alpha(v) = w \} \leq W\).
\end{itemize}
\end{definition}
\begin{proposition}\leavevmode
\begin{itemize}
\item \(\alpha\) is injective if and only if \(N(\alpha) = 0\),
\item \(\alpha\) is surjective if and only if \(\im \alpha = W\).
\end{itemize}
\end{proposition}
\begin{proof}
Easy.
\end{proof}
\begin{eg}
Let \(\alpha: C^\infty(\R) \to C^\infty(\R), \alpha(f)(t) = f''(t)+2f'(t)+5f(t)\). \(\ker \alpha = \{f:f''+2f'+5f=0\}\) and \(g\in \im \alpha\) if and only if there exists an \(f\) such that \(f''+2f'+5f=g\).
\end{eg}
\begin{theorem}[First Isomorphism Theorem]\index{isomorphism}
Let \(\alpha: V\to W\) be a linear map. It induces an isomprhism
\begin{align*}
\bar \alpha: V/\ker \alpha &\to \im \alpha \\
v + \ker \alpha &\mapsto \alpha(v)
\end{align*}
\end{theorem}
\begin{proof}
Check the following:
\begin{itemize}
\item \(\bar \alpha\) is well-defined,
\item \(\bar \alpha\) is linear: immediate from linearity of \(\alpha\),
\item \(\bar \alpha\) is surjective.
\end{itemize}
\end{proof}
\begin{definition}[Rank \& Nullity]\index{linear map!rank}\index{linear map!nullity}\leavevmode
\begin{itemize}
\item \(r(\alpha) = rk(\alpha) = \dim( \im \alpha)\) is the \emph{rank} of \(\alpha\),
\item \(n(\alpha) = \dim N(\alpha)\) is the \emph{nullity} of \(\alpha\).
\end{itemize}
\end{definition}
\begin{theorem}[Rank-nullity]
Let \(U, V\) be \(\F\)-vector spaces, \(\dim U < \infty\). Let \(\alpha:U\to V\) be a linear map. Then
\[
\dim U = r(\alpha) + n(\alpha).
\]
\end{theorem}
\begin{proof}
\(U/\ker \alpha \cong \im \alpha\) so \(\dim U - \dim (\ker \alpha) = \dim (\im \alpha)\). Rearrange.
\end{proof}
\begin{lemma}
Let \(V, W\) be \(\F\)-vector spaces with equal, finite dimension. Let \(\alpha:V\to W\) be linear, then TFAE:
\begin{enumerate}
\item \(\alpha\) is injective,
\item \(\alpha\) is surjective,
\item \(\alpha\) is an isomorphism.
\end{enumerate}
\end{lemma}
\begin{proof}
Rank-nullity theorem.
\end{proof}
\subsection{Linear Maps as Vector Space}
Suppose \(V\) and \(W\) are \(\F\)-vector spaces. Let \(L(V,W) = \{\alpha:V\to W, \alpha \text{ linear}\}\).
\begin{proposition}
\(L(V,W)\) is an \(\F\)-vector space, under operations
\begin{align*}
(\alpha_1+\alpha_2)(v) &= \alpha_1(v) + \alpha_2(v) \\
(\lambda\alpha)(v) &= \lambda(\alpha(v))
\end{align*}
\end{proposition}
\begin{proof}
\(\alpha_1+\alpha_2, \lambda\alpha\) as above are well-defined linear maps. The vector space axioms can be easily checked.
\end{proof}
\begin{proposition}
\label{prop:dimension of linear map space}
If both \(V\) and \(W\) are finite-dimensional over \(\F\) then so is \(L(V,W)\) and \(L(V,W) = \dim V \cdot \dim W\).
\end{proposition}
\begin{proof}
See Lemma~\ref{cor:dim of hom}.
\end{proof}
\subsubsection{Matrices, an Interlude}
\begin{definition}[Matrix]\index{matrix}
An \emph{\(m\times n\) matrix} over \(\F\) is an array with \(m\) rows and \(n\) columns with entries in \(\F\). We write
\[
A = (a_{ij}), a_{ij}\in\F, 1\leq i \leq m, 1\leq j \leq n.
\]
\end{definition}
\begin{definition}
\(\M_{m,n}(\F)\) is the set of all such \(m\times n\) matrices.
\end{definition}
\begin{proposition}
\(\M_{m,n}(\F)\) is an \(\F\)-vector space and \(\dim \M_{m,n}(\F) = m\cdot n\).
\end{proposition}
\begin{proof}
See the \hyperref[eg:matrix as V]{example} on page~\pageref{eg:matrix as V} for the proof of vector space axioms. For the dimensional claim, a standard basis for \(\M_{m,n}(F)\) is
\[
E_{ij}=
\begin{pmatrix}
0 & \dots & 0 \\
\vdots & \ddots & \vdots \\
0 & 1 & 0 \\
\vdots & \ddots & \vdots \\
0 & \dots & 0
\end{pmatrix}
\]
with \(1\) in the \((i,j)\)th entry so \(a_{ij} = \sum_{i,j}^{} a_{ij}E_{ij}\), from which span and linear independence follow. The basis has cardinality \(m\cdot n\).
\end{proof}
\subsubsection{Representation of Linear Maps by Matrices}
Let \(V\) and \(W\) be finite-dimensional \(\F\)-vector space, \(\alpha: V\to W\) linear. Let \(\basis B = \{v_1,\ldots,v_n\}\) be a basis for \(V\), \(\basis C = \{w_1,\ldots,w_m\}\) be a basis for \(W\). If \(v=\sum_{i}\lambda_iv_i \in V\), write
\[
[v]_{\basis B} =
\begin{pmatrix}
\lambda_1 \\
\vdots \\
\lambda_n
\end{pmatrix}
\in \F^n
\]
which is called the \emph{coordinate vector of \(v\) with respect to \(\basis B\)}. Similarly \([w]_{\basis C}\in \F^m\).
\begin{definition}[Matrix representation]\index{linear map!matrix representation}
\([\alpha]_{\basis B, \basis C}\) is the matrix representation of \(\alpha\) with respect to \(\basis B\) and \(\basis C\) with
\begin{align*}
[\alpha]_{\basis B, \basis C} &= \Big( [\alpha(v_1)]_{\basis C} \: \Big| \: [\alpha(v_2)]_{\basis C} \: \Big | \: \cdots \: \Big| \: [\alpha(v_n)]_{\basis C} \Big) \\
&= (a_{ij})
\end{align*}
\end{definition}
The matrix says
\[
\alpha(v_j) = \sum_{i}^{ }a_{ij}w_i.
\]
\begin{lemma}
For any \(v\in V\),
\[
[\alpha(v)]_{\basis C} = [\alpha]_{\basis B, \basis C}\cdot [v]_{\basis B}
\]
where \(\cdot\) is matrix multiplication.
\end{lemma}
\begin{proof}
Fix \(v =\sum_{j=1}^{n}\lambda_jv_j \in V\), so
\[
[v]_{\basis B} =
\begin{pmatrix}
\lambda_1 \\
\vdots \\
\lambda_n
\end{pmatrix}
\]
\begin{align*}
\alpha(v) &= \alpha\left( \sum_{j}^{ }\lambda_jv_j \right) \\
&= \sum_{j}^{ }\lambda_j\alpha(v_j) \\
&= \sum_{j}^{ }\lambda_j\left( \sum_{i}^{ }\alpha_{ij}w_i \right) \\
&= \sum_{i}^{ }\left( \sum_{j}^{} a_{ij}\lambda_j \right) w_i
\end{align*}
so the \(i\)th entry of \(\alpha(v)\) is the \(i\)th entry of \([\alpha]_{\basis B, \basis C} \cdot [v]_{\basis B}\).
\end{proof}
\begin{lemma}
Suppose \(U \stackrel{\beta}{\to} V \stackrel{\alpha}{\to} W\) with \(\alpha, \beta\) linear, with \(\alpha \compose \beta: U\to W\). Let \(\basis A, \basis B, \basis C\) be bases for \(U,V,W\) respectively. Then
\[
[\alpha\compose\beta]_{\basis A, \basis C} = [\alpha]_{\basis B,\basis C}\cdot[\beta]_{\basis A, \basis B}.
\]
\end{lemma}
\begin{proof}
\begin{align*}
(\alpha\compose\beta)(u_\ell) &= \alpha(\beta(u_\ell)), \: u_\ell\in A\\
&= \alpha\Big( \sum_{j}^{ }b_{jl}v_j \Big), \: v_j\in B \\
&= \sum_{j}^{ }b_{jl}\alpha(v_j) \\
&= \sum_{j}^{ }b_{jl}\sum_{i}^{ }a_{ij}w_i, \: w_i\in W \\
&= \sum_{i}^{ }\left( \sum_{j}^{ }a_{ij}b_{jl} \right)w_i
\end{align*}
\end{proof}
\begin{proposition}
Let \(V\) and \(W\) be \(\F\)-vector spaces with \(\dim V = n, \dim W = m\), then
\[
L(V,W) \cong \M_{m,n}(\F).
\]
\end{proposition}
\begin{proof}
Fix bases \(B=\{v_1\ldots,v_n\}, C=\{w_1,\ldots,w_m\}\) for \(V\) and \(W\) respectively. Claim
\begin{align*}
\theta: L(V,W) &\to \M_{m,n}(\F) \\
\alpha &\mapsto [\alpha]_{\basis B, \basis C}
\end{align*}
is an isomorphism:
\begin{itemize}
\item linearity: \([\lambda_1\alpha_1 + \lambda_2\alpha_2]_{\basis B, \basis C} = \lambda_1[\alpha_1]_{\basis B, \basis C} + \lambda_2[\alpha_2]_{\basis B, \basis C}\).
\item surjectivity: given \(A = (a_{ij})\), let \(\alpha:v_j\mapsto \sum_{i=1}^{m}a_{ij}w_i \) and extend linearly. It follows that \(\alpha\in L(V,W)\) and \(\theta(\alpha) = A\).
\item injectivity: \([\alpha]_{\basis B, \basis C} = \V 0\) implies that \(\alpha\) is the zero map.
\end{itemize}
\end{proof}
\begin{corollary}
\label{cor:dim of hom}
\[
\dim L(V,W) = \dim V \cdot \dim W.
\]
\end{corollary}
\begin{eg}
Suppose \(\alpha:V\to W\), \(Y\leq V, Z\leq W\) with \(\alpha(Y)\leq Z\). Let \(\basis B'=\{v_1,\ldots,v_k\}\) be a basis of \(Y\) and extend to \(\basis B=\{v_1,\dots,v_k,v_{k+1}, \dots, v_n\}\) a basis for \(V\). Similarly \(\basis C' = \{w_1,\dots,w_l\}\) and \(\basis C\) for \(Z\) and \(W\).
\begin{itemize}
\item \([\alpha]_{\basis B, \basis C} =
\begin{pmatrix}
A & B \\
0 & C
\end{pmatrix}
\) for some \(A, B, C\) because for \(1\leq j \leq k\), \(\alpha(v_j)\) is a linear combination of \(w_i\) where \(1\leq i \leq l\).
\item \([\alpha|_Y]_{B',C'} = A. \)
\item \(\alpha\) induces a map
\begin{align*}
\bar\alpha: V/Y &\to W/Z \\
v+ Y &\mapsto \alpha(v) + Z
\end{align*}
This is well-defined. Linearity follows from that of \(\alpha\). A basis for \(V/Y\) is \(\basis B''=\{v_{k+1}+Y,\ldots,v_n+Y\}\) and similarly for \(W/Z\). It is an exercise to show \([\bar\alpha]_{\basis B'', \basis C''} = C \).
\end{itemize}
\end{eg}
\subsubsection{Change of Bases}
Throughout this section, let \(V\) and \(W\) be \(\F\)-vector spaces and suppose they have the following bases:
\begin{table}[htbp]
\centering
\begin{tabular}{|c||c|c|}
\hline
Vector space & \(V\) & \(W\) \\ \hline
Basis 1 & \(\basis B = \{v_1,\dots,v_n\}\) & \(\basis C = \{w_1,\dots,w_m\}\) \\ \hline
Basis 2 & \(\basis B' = \{v_1',\dots,v_n'\}\) & \(\basis C' = \{w_1',\dots,w_m'\}\) \\ \hline
\end{tabular}
\end{table}
\begin{definition}[Change-of-basis matrix]\index{matrix!change-of-basis}
The \emph{change-of-basis matrix} from \(\basis B'\) to \(\basis B\) is \(P = (p_{ij})\) given by
\begin{align*}
v_j' &= \sum_{i}^{ }p_{ij}v_i \\
P &= \Big( [v_1']_{\basis B} \: \Big| \: [v_2']_{\basis B} \: \Big| \: \dots \Big| \: [v_n']_{\basis B} \Big) = [\id]_{\basis B', \basis B}
\end{align*}
\end{definition}
\begin{lemma}
\[
[v]_{\basis B} = P[v]_{\basis B'}.
\]
\end{lemma}
\begin{proof}
\[
P[v]_{\basis B'} = [\id]_{\basis B', \basis B}[v]_{\basis B'} = [v]_{\basis B}.
\]
\end{proof}
\begin{lemma}
\(P\) is an invertible \(n\times n\) matrix and \(P^{-1}\) is the change-of-basis matrix from \(\basis B\) to \(\basis B'\).
\end{lemma}
\begin{proof}
\begin{align*}
[\id]_{\basis B, \basis B'}[\id]_{\basis B', \basis B} &= [\id]_{\basis B', \basis B'} = I_n \\
[\id]_{\basis B', \basis B}[\id]_{\basis B, \basis B'} &= [\id]_{\basis B, \basis B} = I_n
\end{align*}
\end{proof}
Let \(Q\) be the change-of-basis matrix from \(\basis C'\) to \(\basis C\). Then \(Q\) is an invertible \(m\times m\) matrix.
\begin{proposition}
Let \(\alpha: V\to W\) be a linear map, \(A = [\alpha]_{\basis B,\basis C}\), \(A' = [\alpha]_{\basis B',\basis C'}\), then
\[
A' = Q^{-1}AP.
\]
\end{proposition}
\begin{proof}
\[
\underbrace{[\id]_{\basis C,\basis C'}}_{Q^{-1}} [\alpha]_{\basis B,\basis C} \underbrace{[\id]_{\basis B',\basis B}}_P = \underbrace{[\id\compose\alpha\compose\id]_{\basis B',\basis C'}}_{A'}
\]
\end{proof}
\begin{definition}[Equivalence of matrices]\index{matrix!equivalence}
\(A, A' \in \M_{m,n}(\F)\) are \emph{equivalent} if
\[
A' = Q^{-1}AP
\]
for some invertible \(P\in \M_{n,n}(\F)\) and \(Q\in \M_{m,m}(\F)\).
\end{definition}
\begin{note}
This defines an equivalence relation on \(\M_{m,n}(\F)\).
\end{note}
\begin{proposition}
Let \(V, W\) be \(\F\)-vector spaces of dimension \(n\) and \(m\) respectively. Let \(\alpha:V\to W\) be a linear map. Then there exist bases \(\basis B\) of \(V\), \(\basis C\) of \(W\), and some \(r\leq m,n\) such that
\[
[\alpha]_{\basis B,\basis C} =
\begin{pmatrix}
I_r & 0 \\
0 & 0
\end{pmatrix}
\]
where \(I_r\) the is \(r\times r\) the identity matrix.
\end{proposition}
\begin{note}
\(r = rk(\alpha) = r(\alpha)\).
\end{note}
\begin{proof}
Fix \(r\) such that \(\dim N(\alpha) = n-r\). Fix a basis for \(N(\alpha)\), say \(v_{r+1},\dots,v_n\). Extend this to a basis \(\basis B\) for \(V\), say \(v_1,\dots,v_r,v_{r+1},\dots,v_n\). Now \(\alpha(v_1),\dots,\alpha(v_r)\) is a basis for \(\im(\alpha)\):
\begin{itemize}
\item span: \(\alpha(v_1),\dots, \alpha(v_n)\) certainly span \(\im(\alpha)\). Since \(v_{r+1}, \dots ,v_n \in \ker \alpha\), \(\alpha(v_{r+1}),\dots,\alpha(v_n) = 0\) so we can remove them from the spanning set.
\item linear independence: assume \(\sum_{i=1}^{n}\lambda_i \alpha(v_i) =\V 0 \). Then \(\alpha \big(\sum_{i=1}^n\lambda_iv_i\big) =\V0\). This implies that
\[
\sum_{i=1}^{n}\lambda_iv_i = \sum_{j=r+1}^{n}\mu_jv_j.
\]
As \(v_1,\dots v_n\) are linearly independent, \(\lambda_i=\mu_j=0\) for all \(i,j\).
\end{itemize}
Extend \(\alpha(v_1),\dots,\alpha(v_r)\) to a basis for \(W\), say \(\basis C\). By construction,
\[
[\alpha]_{\basis B,\basis C} =
\begin{pmatrix}
I_r & 0 \\
0 & 0
\end{pmatrix}
\]
\end{proof}
\begin{remark}
In the proof above we didn't need to assume that \(r = r(\alpha)\). This gives us another way prove Rank-nullity Theorem.
\end{remark}
\begin{corollary}
Any \(m\times n\) matrix is equivalent to
\[
\begin{pmatrix}
I_r & 0 \\
0 & 0
\end{pmatrix}
\]
for some \(r\).
\end{corollary}
\begin{definition}[Row and column rank]\index{matrix!rank}
Let \(A\in \M_{m,n}(\F)\).
\begin{itemize}
\item The \emph{column rank} of \(A\), \(r(A)\) is the dimension of the subspace of \(\F^m\) spanned by the columns of \(A\).
\item The \emph{row rank} of \(A\) is the column rank of \(A^T\).
\end{itemize}
\end{definition}
\begin{note}
If \(\alpha\) is a linear map represented by \(A\) with respect to any choice of bases, then \(r(\alpha) = r(A)\).
\end{note}
\begin{proposition}
Two \(m\times n\) matrices \(A, A'\) are equivalent if and only if
\[
r(A) = r(A').
\]
\end{proposition}
\begin{proof}\leavevmode
\begin{itemize}
\item \(\Leftarrow\): Both \(A\) and \(A'\) are equivalent to \(
\begin{pmatrix}
I_r & 0 \\
0 & 0
\end{pmatrix}
\) and matrix equivalence is transitive.
\item \(\Rightarrow\): Let \(\alpha:\F^n\to \F^m\) be the linear map represented by \(A\) with respect to, say, the standard basis. Since \(A'=Q^{-1}AP\) for some invertible \(P\) and \(Q\), \(A'\) represents the same \(\alpha\) with respect to another bases. \(r(\alpha)\) is defined in a basis-invariant way so \(r(A) = r(\alpha) = r(A')\).
\end{itemize}
\end{proof}
\begin{theorem}
\label{thm:upper corner matrix}
\[
r(A) = r(A^T).
\]
\end{theorem}
\begin{proof} \(
Q^{-1}AP =
\begin{pmatrix}
I_r & 0 \\
0 & 0
\end{pmatrix}_{m, n}
\) where \(P\) and \(Q\) are invertible. Take transpose of the whole equation:
\[
\begin{pmatrix}
I_r & 0 \\
0 & 0
\end{pmatrix}_{n,m}
=(Q^{-1}AP)^T = P^TA^T(Q^T)^{-1}
\]
so \(A^T\) is equivalent to
\[
\begin{pmatrix}
I_r & 0 \\
0 & 0
\end{pmatrix}
\]
\end{proof}
Note a special case for change of basis: \(V = W\), \(\basis C = \basis B\) and \(\basis C' = \basis B'\). \(P\), the change-of-basis matrix from \(\basis B'\) to \(\basis B\), is given the map \(\alpha \in L(V,V)\)
\[
[\alpha]_{\basis B',\basis B'} = P^{-1}[\alpha]_{\basis B,\basis B}P.
\]
\begin{definition}[Similar matrices]\index{matrix!similar}\index{matrix!conjugacy}
Given \(A, A' \in \M_{n,n}(\F)\), \(A\) and \(A'\) are \emph{similar}, or \emph{conjugate} if
\[
A' = P^{-1}AP
\]
for some invertible \(P\).
\end{definition}
\subsubsection{Elementary Matrices and Operations}
\begin{definition}[Elementary column operation]\index{elementary operation}
\emph{Elementary column operation} on a \(m\times n\) matrix \(A\) is one of the following operations:
\begin{enumerate}
\item swap column \(i\) and \(j\) (wlog \(i\neq j\)),
\item scale column \(i\) by \(\lambda\) (\(\lambda\neq0\)),
\item add \(\lambda\) times column \(i\) to column \(j\) (\(i\neq j,\lambda\neq 0\)).
\end{enumerate}
\end{definition}
\begin{definition}[Elementary row operation]
Defined analoguously, replacing ``column'' by ``row''.
\end{definition}
\begin{note}
All of these operations are invertible.
\end{note}
\begin{definition}[Elementary matrix]\index{matrix!elementary}
The elementary column (row, respectively) operations have corresponding elementary matrices, which are the results of performing these column (row, respectively) operations on \(I_n\) (\(I_m\), respectively):
\begin{enumerate}
\item
\[
\begin{pmatrix}
1 & 0 & \cdots & & & 0 \\
\vdots & \ddots & & & & \vdots \\
& & 0 & & 1 & 0 \\
0 & \cdots & 0 & \ddots & 0 & 0 \\
& & 1 & 0 & 0 & & \\
\vdots & & & \ddots & \\
0 & & \cdots & & \cdots & 0
\end{pmatrix}
\]
\item