-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_core.py
186 lines (161 loc) · 9.78 KB
/
model_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
class RobertaForPromptFinetuning(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config)
self.classifier = RobertaClassificationHead(config)
self.lm_head = RobertaLMHead(config)
self.init_weights()
# These attributes should be assigned once the model is initialized
self.model_args = None
self.data_args = None
self.label_word_list = None
# For regression
self.lb = None
self.ub = None
# For auto label search.
self.return_full_softmax = None
def forward(
self,
input_ids=None,
attention_mask=None,
mask_pos=None,
labels=None,
dep_input_ids=None,
dep_attention_mask=None,
dep_token_type_ids=None,
dep_mask_pos=None,
pos_input_ids=None,
pos_attention_mask=None,
pos_token_type_ids=None,
pos_mask_pos=None,
neg_input_ids=None,
neg_attention_mask=None,
neg_token_type_ids=None,
neg_mask_pos=None,
# 如果多个负样例 构造一个负样例数组的 input_ids
):
batch_size = input_ids.size(0)
if self.data_args.use_dependency_template & (self.data_args.use_compare_lm is None):
input_ids = dep_input_ids
mask_pos = dep_mask_pos
attention_mask = dep_attention_mask
if mask_pos is not None:
mask_pos = mask_pos.squeeze()
if self.data_args.use_dependency_template & (self.data_args.use_compare_lm is not None):
dep_mask_pos = dep_mask_pos.squeeze()
pos_mask_pos = pos_mask_pos.squeeze()
neg_mask_pos = neg_mask_pos.squeeze()
# Encode everything
outputs = self.roberta(
input_ids, # [2,128]
attention_mask=attention_mask
)
# Get <mask> token representation [2,128,1024] [2,1024]
sequence_output, pooled_output = outputs[:2]
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
if self.data_args.use_compare_lm == "dep_positive":
dep_outputs = self.roberta(
dep_input_ids, # [2,128]
attention_mask=dep_attention_mask
)
# Get <mask> token representation of positive
dep_sequence_output, dep_pooled_output = dep_outputs[:2]
dep_sequence_mask_output = dep_sequence_output[torch.arange(dep_sequence_output.size(0)), dep_mask_pos]
pos_outputs = self.roberta(
pos_input_ids,
attention_mask=pos_attention_mask
)
pos_sequence_output, pos_pooled_output = pos_outputs[:2]
#【2,1024】
pos_sequence_mask_output = pos_sequence_output[torch.arange(pos_sequence_output.size(0)), pos_mask_pos]
t = 0.07
# Get <mask> token representation [2,4,128,1024] [2,4,1024]
#neg_input_ids : [2,4,128]
neg_sequence_output = [list() for i in range(neg_input_ids.size(1))]
neg_pooled_output = [list() for i in range(neg_input_ids.size(1))]
neg_sequence_mask_output = [list() for i in range(neg_input_ids.size(1))]
neg_sequence_mask_output_reverse = [list() for i in range(neg_input_ids.size(1))]
all_negativeLogit = []
for idx in range(len(neg_input_ids[0])):
sample_neg_outputs = self.roberta(
neg_input_ids[:, idx, :], # [2,128]
attention_mask = neg_attention_mask[:, idx, :]) # [2,128,1024]
neg_sequence_output[idx], neg_pooled_output[idx] = sample_neg_outputs[:2]
neg_sequence_mask_output[idx] = neg_sequence_output[idx][torch.arange(neg_sequence_output[idx].size(0)), neg_mask_pos.T[idx]]
neg_sequence_mask_output_reverse[idx] = neg_sequence_output[idx][torch.arange(neg_sequence_output[idx].size(0)), neg_mask_pos.T[idx]]
#all_negativeLogit.append(torch.div(torch.matmul(sequence_mask_output,neg_sequence_mask_output[idx].T),t))
# if sample_idx == len(neg_input_ids):
# all_neg_sequence_mask_output.sppend(neg_sequence_mask_output)
neg_sequence_mask_output = torch.stack(neg_sequence_mask_output).permute([1,0,-1]) # [2,4,1024]
neg_sequence_mask_output_reverse = torch.stack(neg_sequence_mask_output_reverse).permute([1,0,-1])
#neg_sequence_mask_output_reverse = neg_sequence_mask_output # copy to reverse, or it will chnage in next step
#neg_sequence_mask_output = torch.div(torch.matmul(neg_sequence_mask_output,sequence_mask_output.unsqueeze(-1)), t) # [2,4,1024][2,1024,1]
neg_sequence_mask_output = torch.div(nn.CosineSimilarity(dim=-1)(sequence_mask_output.unsqueeze(1).expand(-1, len(neg_input_ids[1]), -1),
neg_sequence_mask_output), t)
neg_sequence_mask_output_reverse = torch.div(
nn.CosineSimilarity(dim=-1)(pos_sequence_mask_output.unsqueeze(1).expand(-1, len(neg_input_ids[1]), -1),
neg_sequence_mask_output_reverse), t)
# neg_sequence_mask_output_reverse = torch.div(
# nn.CosineSimilarity(dim=-1)(pos_sequence_mask_output.unsqueeze(1).expand(-1, 4, -1),
# neg_sequence_mask_output), t)
#positiveLogit = torch.div(torch.matmul(dep_sequence_mask_output, pos_sequence_mask_output.T),t)
positiveLogit = torch.div(nn.CosineSimilarity(dim=1)(sequence_mask_output,pos_sequence_mask_output),t)
#positiveLogit = torch.sum(positiveLogit * torch.eye(batch_size).cuda(), dim=1)
logits_max = torch.max(torch.max(torch.max(neg_sequence_mask_output,neg_sequence_mask_output_reverse)),torch.max(positiveLogit))
neg_sequence_mask_output = neg_sequence_mask_output - logits_max.detach()
neg_sequence_mask_output_reverse = neg_sequence_mask_output_reverse - logits_max.detach()
positiveLogit = positiveLogit - logits_max.detach()
finalExplogit = torch.div(torch.exp(positiveLogit),torch.exp(positiveLogit)+torch.exp(torch.sum(neg_sequence_mask_output,dim=1).squeeze(-1))) #这里按照不调换i和j位置的输出 pos只有1条 所以都一样
finalExplogit_reverse = torch.div(torch.exp(positiveLogit),torch.exp(positiveLogit)+torch.exp(torch.sum(neg_sequence_mask_output_reverse,dim=1).squeeze(-1))) #这里调换i和j位置的输出
t = 1
compareLogit = -torch.log(finalExplogit) - t * torch.log(finalExplogit_reverse) # 两部分合起来 如要多个损失 则重写这一部分
compareLoss = torch.sum(compareLogit)
# a = torch.eye(2)
# b = torch.div(torch.matmul(pos_sequence_mask_output, dep_sequence_mask_output.T), t)
# torch.mm(a, b)
# maskpositiveLogit = positiveLogit * mask
#negativeLogit = torch.div(torch.matmul(dep_sequence_mask_output,pos_sequence_mask_output.T),T)
# positveExpLogit = torch.exp(positiveLogit)
# negativeExpLogit = torch.exp(negativeLogit)
# for each_negative_output in neg_sequence_mask_output:
# negativeLogit = torch.exp((torch.div(torch.matmul([dep_sequence_mask_output * len(neg_sequence_mask_output)], each_negative_output.T),T)))
#positive_sim = dep_sequence_mask_output * sequence_mask_output
#cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
#positive_result = cos(dep_sequence_mask_output,pos_sequence_mask_output)/T
#negative_result = cos(sequence_mask_output,pos_sequence_mask_output)/T+cos(sequence_output,neg_sequence_mask_output)/T
# Logits over vocabulary tokens
prediction_mask_scores = self.lm_head(sequence_mask_output) #[2,50264]
# Exit early and only return mask logits.
if self.return_full_softmax:
if labels is not None:
return torch.zeros(1, out=prediction_mask_scores.new()), prediction_mask_scores
return prediction_mask_scores
# Return logits for each label
logits = []
for label_id in range(len(self.label_word_list)):
#print(prediction_mask_scores[:, self.label_word_list[label_id]])
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1)) # ==> [2,1]或[1,-1] logits : 5{[2,1]}
#logit append多了几个之后 就算cat一个或者多个都可以
logits = torch.cat(logits, -1)
# Regression task
if self.config.num_labels == 1:
logsoftmax = nn.LogSoftmax(-1)
logits = logsoftmax(logits) # Log prob of right polarity
loss = None
if labels is not None:
if self.num_labels == 1:
# Regression task
loss_fct = nn.KLDivLoss(log_target=True)
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
loss = loss_fct(logits.view(-1, 2), labels)
else:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
tep = self.data_args.temperature
loss = loss + tep * compareLoss
output = (logits,)
if self.num_labels == 1:
# Regression output
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
return ((loss,) + output) if loss is not None else output