-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathengine_finetune.py
534 lines (396 loc) · 18.8 KB
/
engine_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import os
import numpy as np
import math
import sys
from typing import Iterable, Optional
import torch
from timm.data import Mixup
from util.metrics import mean_per_class_accuracy, accuracy
from torch.nn import functional as F
import misc as misc
import util.lr_sched as lr_sched
from block_flops_dict import batch_select_flops
from misc import is_dist_avail_and_initialized
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
mixup_fn: Optional[Mixup] = None, log_writer=None,
args=None, logger=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ", logger=logger)
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
logger.info('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
samples, targets = batch[0], batch[1]
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
outputs, token_select = model(samples)
teacher_outputs, _ = model(samples, complete_model=True)
cls_kl_loss = F.kl_div(
F.log_softmax(outputs, dim=-1),
F.log_softmax(teacher_outputs.detach(), dim=-1),
reduction='batchmean',
log_target=True
)
teacher_loss = criterion.base_criterion(teacher_outputs, targets)
outputs = dict(prediction=outputs, **token_select)
loss, loss_dict = criterion(outputs, targets)
loss = loss + teacher_loss + cls_kl_loss
loss_dict["teacher_loss"] = teacher_loss
loss_dict['distillation_loss'] = cls_kl_loss
loss_value = loss.item()
loss_dict = {k: v.item() for k, v in loss_dict.items()}
loss /= accum_iter
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=False,
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value, **loss_dict)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(loss=loss, lr=max_lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', max_lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def train_video_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
mixup_fn: Optional[Mixup] = None, log_writer=None,
args=None, logger=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ", logger=logger)
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
logger.info('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
samples, targets = batch[0], batch[1]
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
outputs, token_select = model(samples)
teacher_outputs, _ = model(samples, complete_model=True)
cls_kl_loss = F.kl_div(
F.log_softmax(outputs, dim=-1),
F.log_softmax(teacher_outputs.detach(), dim=-1),
reduction='batchmean',
log_target=True
)
teacher_loss = criterion.base_criterion(teacher_outputs, targets)
outputs = dict(prediction=outputs, **token_select)
loss, loss_dict = criterion(outputs, targets)
loss = loss + teacher_loss + cls_kl_loss
loss_dict["teacher_loss"] = teacher_loss
loss_dict['distillation_loss'] = cls_kl_loss
# outputs = dict(prediction=outputs, **token_select)
# loss, loss_dict = criterion(outputs, targets)
loss_value = loss.item()
loss_dict = {k: v.item() for k, v in loss_dict.items()}
loss /= accum_iter
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=False,
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value, **loss_dict)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(loss=loss, lr=max_lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', max_lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, logger, base_flops, flops_dict, args):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = misc.MetricLogger(delimiter=" ", logger=logger)
header = 'Test:'
# switch to evaluation mode
model.eval()
token_select = []
targets = []
predictions = []
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
target = batch[1] # TODO: check why default use -1
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
output, _ = model(images)
loss = criterion(output, target)
token_select.append(_["token_select"])
predictions.append(output)
targets.append(target)
# acc1, acc5 = accuracy(output, target, topk=(1, 5))
# batch_size = images.shape[0]
# metric_logger.update(loss=loss.item())
# metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
# metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
targets = torch.cat(targets, dim=0) # targets.shape 6149
predictions = torch.cat(predictions, dim=0)
token_select = torch.cat(token_select, dim=0)
if is_dist_avail_and_initialized():
targets = all_gather_concat(targets)
predictions = all_gather_concat(predictions)
token_select = all_gather_concat(token_select)
print(token_select.shape)
status = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if args.metric == "accuracy":
acc1, acc5 = accuracy(predictions, targets, topk=(1, 5))
logger.info('* Acc@1 {:.3f} Acc@5 {:.3f}'.format(acc1, acc5))
status["metric"] = acc1.item()
elif args.metric == "mean_per_class_acc":
class_mean_acc = mean_per_class_accuracy(predictions, targets, args.nb_classes)
logger.info("mean per class accuracy={:4f}%".format(class_mean_acc))
status["metric"] = class_mean_acc.item()
# token_select = token_select.float()
# assert "BASE" in args.finetune # block_num=12 only for ViT-b
# batch_flops = batch_select_flops(token_select.shape[0], flops_dict=flops_dict, token_select=token_select, block_num=12, base_flops=base_flops)
# logger.info("Average flops: {} GFlops".format(batch_flops.mean()))
# logger.info("Rate=flops/vit-b flops: {}".format(batch_flops.mean() / 17.6)) # vit-b
# logger.info("Select rate in different layers:")
# for layer in range(0, token_select.shape[1]): # [n, 12, 196, 1]
# logger.info(" {}% tokens selected in layer {}".format(token_select[:, layer, :, :].mean(), layer))
# logger.info("{}% tokens selected overall".format(token_select.mean()))
return status
@torch.no_grad()
def evaluate_video(data_loader, model, device, logger, base_flops, flops_dict, args):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = misc.MetricLogger(delimiter=" ", logger=logger)
header = 'Test:'
# switch to evaluation mode
model.eval()
token_select = []
targets = []
predictions = []
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
target = batch[1] # TODO: check why default use -1
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
B, V = images.shape[0], images.shape[1]
images = images.flatten(0, 1)
output, _ = model(images)
output = output.view(B, V, -1).mean(dim=1)
loss = criterion(output, target)
token_select.append(_["token_select"])
predictions.append(output)
targets.append(target)
# acc1, acc5 = accuracy(output, target, topk=(1, 5))
# batch_size = images.shape[0]
# metric_logger.update(loss=loss.item())
# metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
# metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
targets = torch.cat(targets, dim=0) # targets.shape 6149
predictions = torch.cat(predictions, dim=0)
token_select = torch.cat(token_select, dim=0)
if is_dist_avail_and_initialized():
targets = all_gather_concat(targets)
predictions = all_gather_concat(predictions)
token_select = all_gather_concat(token_select)
print(token_select.shape)
status = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if args.metric == "accuracy":
acc1, acc5 = accuracy(predictions, targets, topk=(1, 5))
logger.info('* Acc@1 {:.3f} Acc@5 {:.3f}'.format(acc1, acc5))
status["metric"] = acc1.item()
elif args.metric == "mean_per_class_acc":
class_mean_acc = mean_per_class_accuracy(predictions, targets, args.nb_classes)
logger.info("mean per class accuracy={:4f}%".format(class_mean_acc))
status["metric"] = class_mean_acc.item()
token_select = token_select.float()
assert "BASE" in args.finetune # block_num=12 only for ViT-b
batch_flops = batch_select_flops(token_select.shape[0], flops_dict=flops_dict, token_select=token_select, block_num=12, base_flops=base_flops)
logger.info("Average flops: {} GFlops".format(batch_flops.mean()))
logger.info("Rate=flops/vit-b flops: {}".format(batch_flops.mean() / 17.6)) # vit-b
logger.info("Select rate in different layers:")
for layer in range(0, token_select.shape[1]): # [n, 12, 196, 1]
logger.info(" {}% tokens selected in layer {}".format(token_select[:, layer, :, :].mean(), layer))
logger.info("{}% tokens selected overall".format(token_select.mean()))
return status
def merge(eval_path, num_tasks, is_hmdb=False):
dict_feats = {}
dict_label = {}
dict_pos = {}
print("Reading individual output files")
for x in range(num_tasks):
file = os.path.join(eval_path, str(x) + '.txt')
lines = open(file, 'r').readlines()[1:]
for line in lines:
line = line.strip()
name = line.split('[')[0]
label = line.split(']')[1].split(' ')[1]
chunk_nb = line.split(']')[1].split(' ')[2]
split_nb = line.split(']')[1].split(' ')[3]
data = np.fromstring(line.split('[')[1].split(']')[0], dtype=np.float, sep=',')
if not name in dict_feats:
dict_feats[name] = []
dict_label[name] = 0
dict_pos[name] = []
if chunk_nb + split_nb in dict_pos[name]:
continue
dict_feats[name].append(data)
dict_pos[name].append(chunk_nb + split_nb)
dict_label[name] = label
print("Computing final results")
input_lst = []
print(len(dict_feats))
for i, item in enumerate(dict_feats):
input_lst.append([i, item, dict_feats[item], dict_label[item]])
from multiprocessing import Pool
p = Pool(64)
ans = p.map(compute_video_hmdb if is_hmdb else compute_video, input_lst)
top1 = [x[1] for x in ans]
top5 = [x[2] for x in ans]
pred = [x[0] for x in ans]
label = [x[3] for x in ans]
final_top1 ,final_top5 = np.mean(top1), np.mean(top5)
return final_top1*100 ,final_top5*100
def compute_video(lst):
i, video_id, data, label = lst
feat = [x for x in data]
feat = np.mean(feat, axis=0)
pred = np.argmax(feat)
top1 = (int(pred) == int(label)) * 1.0
top5 = (int(label) in np.argsort(-feat)[:5]) * 1.0
return [pred, top1, top5, int(label)]
def compute_video_hmdb(lst):
i, video_id, data, label = lst
feat = [x for x in data]
feat = np.mean(feat, axis=0)
# print(feat.shape)
try:
pred = np.argmax(feat)
top1 = (int(pred) == int(label)) * 1.0
top5 = (int(label) in np.argsort(-feat)[:5]) * 1.0
except:
pred = 0
top1 = 1.0
top5 = 1.0
label = 0
return [pred, top1, top5, int(label)]
def all_gather(data):
world_size = misc.get_world_size()
if world_size == 1:
return [data]
gather_list = [
torch.empty_like(data)
for _ in range(world_size)
]
torch.distributed.all_gather(gather_list, data)
return gather_list
def all_gather_concat(data: torch.Tensor) -> torch.Tensor:
"""Gather tensors with different first-dimension size and concat to one
tenosr.
Note:
Only the first dimension should be different.
Args:
data (Tensor): Tensor to be gathered.
Returns:
torch.Tensor: The concatenated tenosr.
"""
if misc.get_world_size() == 1:
return data
data_size = torch.tensor(data.size(0), device=data.device)
sizes_list = all_gather(data_size)
max_length = max(sizes_list)
size_diff = max_length.item() - data_size.item()
if size_diff:
padding = torch.zeros(
size_diff, *data.size()[1:], device=data.device, dtype=data.dtype)
data = torch.cat((data, padding))
gather_list = all_gather(data)
all_data = []
for tensor, size in zip(gather_list, sizes_list):
all_data.append(tensor[:size])
return torch.cat(all_data)
@torch.no_grad()
def final_test(data_loader, model, device, file):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Final_Test:'
# switch to evaluation mode
model.eval()
final_result = []
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
target = batch[1]
ids = batch[2]
chunk_nb = batch[3]
split_nb = batch[4]
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
for i in range(output.size(0)):
string = "{} {} {} {} {}\n".format(
ids[i], str(output.data[i].cpu().numpy().tolist()), str(int(target[i].cpu().numpy())),
str(int(chunk_nb[i].cpu().numpy())), str(int(split_nb[i].cpu().numpy()))
)
final_result.append(string)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
if not os.path.exists(file):
os.mknod(file)
with open(file, 'w') as f:
f.write("{}, {}\n".format(acc1, acc5))
for line in final_result:
f.write(line)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}