diff --git a/src/core/MOM_checksum_packages.F90 b/src/core/MOM_checksum_packages.F90 index 4a9df04c4d..dc60e0888f 100644 --- a/src/core/MOM_checksum_packages.F90 +++ b/src/core/MOM_checksum_packages.F90 @@ -268,10 +268,11 @@ subroutine MOM_state_stats(mesg, u, v, h, Temp, Salt, G, GV, US, allowChange, pe ! Local variables real, dimension(G%isc:G%iec, G%jsc:G%jec) :: & tmp_A, & ! The area per cell [m2] (unscaled to permit reproducing sum). - tmp_V, & ! The column-integrated volume [m3] (unscaled to permit reproducing sum) - tmp_T, & ! The column-integrated temperature [degC m3] (unscaled to permit reproducing sum) - tmp_S ! The column-integrated salinity [ppt m3] (unscaled to permit reproducing sum) - real :: Vol, dV ! The total ocean volume and its change [m3] (unscaled to permit reproducing sum). + tmp_V, & ! The column-integrated volume [m3] or mass [kg] (unscaled to permit reproducing sum), + ! depending on whether the Boussinesq approximation is used + tmp_T, & ! The column-integrated temperature [degC m3] or [degC kg] (unscaled to permit reproducing sum) + tmp_S ! The column-integrated salinity [ppt m3] or [ppt kg] (unscaled to permit reproducing sum) + real :: Vol, dV ! The total ocean volume or mass and its change [m3] or [kg] (unscaled to permit reproducing sum). real :: Area ! The total ocean surface area [m2] (unscaled to permit reproducing sum). real :: h_minimum ! The minimum layer thicknesses [H ~> m or kg m-2] real :: T_scale ! The scaling conversion factor for temperatures [degC C-1 ~> 1] @@ -284,7 +285,7 @@ subroutine MOM_state_stats(mesg, u, v, h, Temp, Salt, G, GV, US, allowChange, pe ! assumption we will not turn this on with threads type(stats), save :: oldT, oldS logical, save :: firstCall = .true. - real, save :: oldVol ! The previous total ocean volume [m3] + real, save :: oldVol ! The previous total ocean volume [m3] or mass [kg] character(len=80) :: lMsg integer :: is, ie, js, je, nz, i, j, k @@ -308,7 +309,7 @@ subroutine MOM_state_stats(mesg, u, v, h, Temp, Salt, G, GV, US, allowChange, pe h_minimum = 1.E34*GV%m_to_H do k=1,nz ; do j=js,je ; do i=is,ie if (G%mask2dT(i,j)>0.) then - dV = US%L_to_m**2*G%areaT(i,j)*GV%H_to_m*h(i,j,k) + dV = US%L_to_m**2*G%areaT(i,j)*GV%H_to_MKS*h(i,j,k) tmp_V(i,j) = tmp_V(i,j) + dV if (do_TS .and. h(i,j,k)>0.) then T%minimum = min( T%minimum, T_scale*Temp(i,j,k) ) ; T%maximum = max( T%maximum, T_scale*Temp(i,j,k) ) diff --git a/src/diagnostics/MOM_PointAccel.F90 b/src/diagnostics/MOM_PointAccel.F90 index e9c1092ed7..ab3c104d0f 100644 --- a/src/diagnostics/MOM_PointAccel.F90 +++ b/src/diagnostics/MOM_PointAccel.F90 @@ -95,9 +95,10 @@ subroutine write_u_accel(I, j, um, hin, ADp, CDp, dt, G, GV, US, CS, vel_rpt, st real :: du ! A velocity change [L T-1 ~> m s-1] real :: Inorm(SZK_(GV)) ! The inverse of the normalized velocity change [L T-1 ~> m s-1] real :: e(SZK_(GV)+1) ! Simple estimates of interface heights based on the sum of thicknesses [m] - real :: h_scale ! A scaling factor for thicknesses [m H-1 ~> 1 or m3 kg-1] + real :: h_scale ! A scaling factor for thicknesses [m H-1 ~> 1] or [kg m-2 H-1 ~> 1] real :: vel_scale ! A scaling factor for velocities [m T s-1 L-1 ~> 1] - real :: uh_scale ! A scaling factor for transport per unit length [m2 T s-1 L-1 H-1 ~> 1 or m3 kg-1] + real :: uh_scale ! A scaling factor for transport per unit length [m2 T s-1 L-1 H-1 ~> 1] + ! or [kg T m-1 s-1 L-1 H-1 ~> 1] real :: temp_scale ! A scaling factor for temperatures [degC C-1 ~> 1] real :: saln_scale ! A scaling factor for salinities [ppt S-1 ~> 1] integer :: yr, mo, day, hr, minute, sec, yearday @@ -108,7 +109,7 @@ subroutine write_u_accel(I, j, um, hin, ADp, CDp, dt, G, GV, US, CS, vel_rpt, st integer :: file Angstrom = GV%Angstrom_H + GV%H_subroundoff - h_scale = GV%H_to_m ; vel_scale = US%L_T_to_m_s ; uh_scale = GV%H_to_m*US%L_T_to_m_s + h_scale = GV%H_to_mks ; vel_scale = US%L_T_to_m_s ; uh_scale = h_scale*vel_scale temp_scale = US%C_to_degC ; saln_scale = US%S_to_ppt ! if (.not.associated(CS)) return @@ -232,7 +233,7 @@ subroutine write_u_accel(I, j, um, hin, ADp, CDp, dt, G, GV, US, CS, vel_rpt, st do k=ks,ke ; if (do_k(k)) write(file,'(ES10.3," ")', advance='no') h_scale*hv(I,j,k) ; enddo endif if (present(str)) then - write(file,'(/,"Stress: ",ES10.3)', advance='no') vel_scale*US%Z_to_m * (str*dt / GV%Rho0) + write(file,'(/,"Stress: ",ES10.3)', advance='no') (uh_scale*GV%RZ_to_H) * (str*dt) endif if (associated(CS%u_accel_bt)) then @@ -435,9 +436,10 @@ subroutine write_v_accel(i, J, vm, hin, ADp, CDp, dt, G, GV, US, CS, vel_rpt, st real :: dv ! A velocity change [L T-1 ~> m s-1] real :: Inorm(SZK_(GV)) ! The inverse of the normalized velocity change [L T-1 ~> m s-1] real :: e(SZK_(GV)+1) ! Simple estimates of interface heights based on the sum of thicknesses [m] - real :: h_scale ! A scaling factor for thicknesses [m H-1 ~> 1 or m3 kg-1] + real :: h_scale ! A scaling factor for thicknesses [m H-1 ~> 1] or [kg m-2 H-1 ~> 1] real :: vel_scale ! A scaling factor for velocities [m T s-1 L-1 ~> 1] - real :: uh_scale ! A scaling factor for transport per unit length [m2 T s-1 L-1 H-1 ~> 1 or m3 kg-1] + real :: uh_scale ! A scaling factor for transport per unit length [m2 T s-1 L-1 H-1 ~> 1] + ! or [kg T m-1 s-1 L-1 H-1 ~> 1] real :: temp_scale ! A scaling factor for temperatures [degC C-1 ~> 1] real :: saln_scale ! A scaling factor for salinities [ppt S-1 ~> 1] integer :: yr, mo, day, hr, minute, sec, yearday @@ -448,7 +450,7 @@ subroutine write_v_accel(i, J, vm, hin, ADp, CDp, dt, G, GV, US, CS, vel_rpt, st integer :: file Angstrom = GV%Angstrom_H + GV%H_subroundoff - h_scale = GV%H_to_m ; vel_scale = US%L_T_to_m_s ; uh_scale = GV%H_to_m*US%L_T_to_m_s + h_scale = GV%H_to_mks ; vel_scale = US%L_T_to_m_s ; uh_scale = h_scale*vel_scale temp_scale = US%C_to_degC ; saln_scale = US%S_to_ppt ! if (.not.associated(CS)) return @@ -576,7 +578,7 @@ subroutine write_v_accel(i, J, vm, hin, ADp, CDp, dt, G, GV, US, CS, vel_rpt, st do k=ks,ke ; if (do_k(k)) write(file,'(ES10.3," ")', advance='no') h_scale*hv(i,J,k) ; enddo endif if (present(str)) then - write(file,'(/,"Stress: ",ES10.3)', advance='no') vel_scale*US%Z_to_m * (str*dt / GV%Rho0) + write(file,'(/,"Stress: ",ES10.3)', advance='no') (uh_scale*GV%RZ_to_H) * (str*dt) endif if (associated(CS%v_accel_bt)) then diff --git a/src/tracer/MOM_tracer_registry.F90 b/src/tracer/MOM_tracer_registry.F90 index c01419f3f8..8f7f2a280c 100644 --- a/src/tracer/MOM_tracer_registry.F90 +++ b/src/tracer/MOM_tracer_registry.F90 @@ -786,14 +786,16 @@ subroutine tracer_array_chkinv(mesg, G, GV, h, Tr, ntr) integer, intent(in) :: ntr !< number of registered tracers ! Local variables - real :: vol_scale ! The dimensional scaling factor to convert volumes to m3 [m3 H-1 L-2 ~> 1 or m3 kg-1] - real, dimension(SZI_(G),SZJ_(G),SZK_(GV)) :: tr_inv ! Volumetric tracer inventory in each cell [conc m3] - real :: total_inv ! The total amount of tracer [conc m3] + real :: vol_scale ! The dimensional scaling factor to convert volumes to m3 [m3 H-1 L-2 ~> 1] or cell + ! masses to kg [kg H-1 L-2 ~> 1], depending on whether the Boussinesq approximation is used + real :: tr_inv(SZI_(G),SZJ_(G),SZK_(GV)) ! Volumetric or mass-based tracer inventory in + ! each cell [conc m3] or [conc kg] + real :: total_inv ! The total amount of tracer [conc m3] or [conc kg] integer :: is, ie, js, je, nz integer :: i, j, k, m is = G%isc ; ie = G%iec ; js = G%jsc ; je = G%jec ; nz = GV%ke - vol_scale = GV%H_to_m*G%US%L_to_m**2 + vol_scale = GV%H_to_MKS*G%US%L_to_m**2 do m=1,ntr do k=1,nz ; do j=js,je ; do i=is,ie tr_inv(i,j,k) = Tr(m)%conc_scale*Tr(m)%t(i,j,k) * (vol_scale * h(i,j,k) * G%areaT(i,j)*G%mask2dT(i,j)) @@ -814,16 +816,18 @@ subroutine tracer_Reg_chkinv(mesg, G, GV, h, Reg) real, dimension(SZI_(G),SZJ_(G),SZK_(GV)), intent(in) :: h !< Layer thicknesses [H ~> m or kg m-2] ! Local variables - real :: vol_scale ! The dimensional scaling factor to convert volumes to m3 [m3 H-1 L-2 ~> 1 or m3 kg-1] - real, dimension(SZI_(G),SZJ_(G),SZK_(GV)) :: tr_inv ! Volumetric tracer inventory in each cell [conc m3] - real :: total_inv ! The total amount of tracer [conc m3] + real :: vol_scale ! The dimensional scaling factor to convert volumes to m3 [m3 H-1 L-2 ~> 1] or cell + ! masses to kg [kg H-1 L-2 ~> 1], depending on whether the Boussinesq approximation is used + real :: tr_inv(SZI_(G),SZJ_(G),SZK_(GV)) ! Volumetric or mass-based tracer inventory in + ! each cell [conc m3] or [conc kg] + real :: total_inv ! The total amount of tracer [conc m3] or [conc kg] integer :: is, ie, js, je, nz integer :: i, j, k, m if (.not.associated(Reg)) return is = G%isc ; ie = G%iec ; js = G%jsc ; je = G%jec ; nz = GV%ke - vol_scale = GV%H_to_m*G%US%L_to_m**2 + vol_scale = GV%H_to_MKS*G%US%L_to_m**2 do m=1,Reg%ntr do k=1,nz ; do j=js,je ; do i=is,ie tr_inv(i,j,k) = Reg%Tr(m)%conc_scale*Reg%Tr(m)%t(i,j,k) * (vol_scale * h(i,j,k) * G%areaT(i,j)*G%mask2dT(i,j))