Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Develop minimization plots #85

Merged
merged 13 commits into from
Nov 15, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
138 changes: 138 additions & 0 deletions LAMDA/minimization_plots.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
import numpy as np
import pandas as pd
from datetime import datetime
import matplotlib.pyplot as plt
from emcpy.plots.plots import LinePlot
from emcpy.plots import CreatePlot

__all__ = ['plot_minimization']


def _plot_cost_function(df, config, outdir):
"""
Use data from dataframe to plot the cost function.
"""
# Get cycle info
cycle = df.index.get_level_values(0)[-1]
cyclestr = datetime.strftime(cycle, '%Y%m%d%H')
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Only question is how to handle the tm06 information for this plot?

n_cycles = len(np.unique(df.index.get_level_values(0)))

# Create approriate dataframes
current_cycle_df = df.loc[cycle]
avg_df = df.groupby(level=[1, 2]).mean()

# Grab data
j = current_cycle_df['J'].to_numpy()
x = np.arange(len(j))

avg_j = avg_df['J'].to_numpy()
avg_x = np.arange(len(avg_j))

# Create LinePlot objects
cost_plot = LinePlot(x, j)
cost_plot.linewidth = 2
cost_plot.label = 'Cost'

avg_cost_plot = LinePlot(avg_x, avg_j)
avg_cost_plot.color = 'tab:red'
avg_cost_plot.linewidth = 2
avg_cost_plot.label = f'Last {n_cycles} cycles Average'

# Create Plot
myplot = CreatePlot()
myplot.draw_data([cost_plot, avg_cost_plot])
myplot.set_yscale('log')
myplot.add_grid()
myplot.set_xlim(0, len(j)-1)
myplot.add_xlabel('Iterations')
myplot.add_ylabel('log (J)')
myplot.add_legend(loc='upper right',
fontsize='large')

title = f"{config['experiment']} Cost - {config['tm']}"
myplot.add_title(title, loc='left')
myplot.add_title(cyclestr, loc='right',
fontweight='semibold')

fig = myplot.return_figure()

savefile = (f"{cyclestr}_{config['experiment']}_" +
f"tm0{config['tm']}_cost_function.png")
plt.savefig(outdir + savefile, bbox_inches='tight',
pad_inches=0.1)
plt.close('all')


def _plot_gnorm(df, config, outdir):
"""
Use date from dataframe to plot gnorm.
"""
# Get cycle info
cycle = df.index.get_level_values(0)[-1]
cyclestr = datetime.strftime(cycle, '%Y%m%d%H')
n_cycles = len(np.unique(df.index.get_level_values(0)))

# Create approriate dataframes
current_cycle_df = df.loc[cycle]
avg_df = df.groupby(level=[1, 2]).mean()

# Grab data
gJ = current_cycle_df['gJ'].to_numpy()
gJ = np.log(gJ/gJ[0])
x = np.arange(len(gJ))

avg_gJ = avg_df['gJ'].to_numpy()
avg_gJ = np.log(avg_gJ/avg_gJ[0])
avg_x = np.arange(len(avg_gJ))

# Create LinePlot objects
gnorm = LinePlot(x, gJ)
gnorm.linewidth = 2
gnorm.label = 'gnorm'

avg_gnorm = LinePlot(avg_x, avg_gJ)
avg_gnorm.color = 'tab:red'
avg_gnorm.linewidth = 2
avg_gnorm.linestyle = '--'
avg_gnorm.label = f'Last {n_cycles} cycles Average'

# Create Plot
myplot = CreatePlot()
myplot.draw_data([gnorm, avg_gnorm])
# myplot.set_yscale('log')
myplot.add_grid()
myplot.set_xlim(0, len(gJ)-1)
myplot.add_xlabel('Iterations')
myplot.add_ylabel('log (gnorm)')
myplot.add_legend(loc='upper right',
fontsize='large')

title = f"{config['experiment']} gnorm - {config['tm']}"
myplot.add_title(title, loc='left')
myplot.add_title(cyclestr, loc='right',
fontweight='semibold')

fig = myplot.return_figure()

savefile = (f"{cyclestr}_{config['experiment']}_" +
f"tm0{config['tm']}_gnorm.png")
plt.savefig(outdir + savefile, bbox_inches='tight',
pad_inches=0.1)
plt.close('all')


def plot_minimization(df, plotting_config, outdir):
"""
Plot minimization plots including gnorm and cost function
and save them to outdir.

Args:
df : (pandas dataframe) dataframe with appropriate information
from GSI Stat file
plotting_config : (dict) dictionary with information about
minimization period
outdir : (str) path to output diagnostics
"""

_plot_gnorm(df, plotting_config, outdir)
_plot_cost_function(df, plotting_config, outdir)
Loading