-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
245 lines (197 loc) · 7.85 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
'''
Repository: https://github.com/KugaMaxx/cuke-emlb
'''
from datetime import timedelta
from typing import Tuple, List
import dv_processing as dv
import numpy as np
from numpy.lib.stride_tricks import as_strided
def median_filter(data, size=3):
temp = np.pad(data, [(size//2, size//2)], mode='constant')
view = as_strided(temp, shape=(data.shape[0], data.shape[1], size, size),
strides=(temp.strides[0], temp.strides[1], temp.strides[0], temp.strides[1]))
filtered = np.median(view, axis=(2, 3))
return filtered
class EventStructuralRatioV2(object):
def __init__(self, resolution) -> None:
self.resolution = resolution
self.accumulator = dv.Accumulator(resolution)
# set accumulator
self.accumulator.setMinPotential(-np.inf)
self.accumulator.setMaxPotential(np.inf)
self.accumulator.setEventContribution(1.0)
self.accumulator.setIgnorePolarity(True)
self.accumulator.setDecayFunction(dv.Accumulator.Decay.NONE)
def evalEventStorePerTime(self, events: dv.EventStore,
interval: timedelta = timedelta(milliseconds=33)):
# slice data
slicer, score = dv.EventStreamSlicer(), list()
slicer.doEveryTimeInterval(
interval,
lambda events: score.append(self._calc_esr(events))
)
slicer.accept(events)
# return result
return np.array(score)
def evalEventStorePerNumber(self, events: dv.EventStore,
interval: int = 30000):
# slice data
slicer, score = dv.EventStreamSlicer(), list()
slicer.doEveryNumberOfEvents(
interval,
lambda events: score.append(self._calc_esr(events))
)
slicer.accept(events)
# return result
return np.array(score)
def _calc_esr(self, events):
self.accumulator.clear()
self.accumulator.accept(events)
# get basic info
n = median_filter(self.accumulator.getPotentialSurface(), size=3)
N = events.size()
K = self.resolution[0] * self.resolution[1]
# calculate ntss
ntss = (n * n).sum() / (N * N)
# calculate ln
ln = (K - (0.5 ** n).sum()) / K
# return esr
return 1000 * np.sqrt(ntss * ln)
class EventStructuralRatioV1(object):
def __init__(self, resolution) -> None:
self.resolution = resolution
self.accumulator = dv.Accumulator(resolution)
# set accumulator
self.accumulator.setMinPotential(-np.inf)
self.accumulator.setMaxPotential(np.inf)
self.accumulator.setEventContribution(1.0)
self.accumulator.setIgnorePolarity(True)
self.accumulator.setDecayFunction(dv.Accumulator.Decay.NONE)
def evalPerTimeInterval(self, data,
reference: str = "events",
interval: timedelta = timedelta(milliseconds=33)):
# slice data
slicer, score = kit.MonoCameraSlicer(), list()
slicer.doEveryTimeInterval(
reference, interval,
lambda data: score.append(self._calc_esr(data["events"].toEventStore()))
)
slicer.accept(data)
# return result
return np.array(score)
def evalPerNumberInterval(self, data,
reference: str = "events",
interval: int = 30000):
# slice data
slicer, score = kit.MonoCameraSlicer(), list()
slicer.doEveryNumberOfElements(
reference, interval,
lambda data: score.append(self._calc_esr(data["events"].toEventStore()))
)
slicer.accept(data)
# return result
return np.array(score)
def evalEventStorePerTime(self, events: dv.EventStore,
interval: timedelta = timedelta(milliseconds=33)):
# slice data
slicer, score = dv.EventStreamSlicer(), list()
slicer.doEveryTimeInterval(
interval,
lambda events: score.append(self._calc_esr(events))
)
slicer.accept(events)
# return result
return np.array(score)
def evalEventStorePerNumber(self, events: dv.EventStore,
interval: int = 30000):
# slice data
slicer, score = dv.EventStreamSlicer(), list()
slicer.doEveryNumberOfEvents(
interval,
lambda events: score.append(self._calc_esr(events))
)
slicer.accept(events)
# return result
return np.array(score)
def _calc_esr(self, events):
self.accumulator.clear()
self.accumulator.accept(events)
# get basic info
n = median_filter(self.accumulator.getPotentialSurface(), size=3)
N, M = events.size(), int(events.size() * 2 / 3)
K = self.resolution[0] * self.resolution[1] # n.size
# calculate ntss
ntss = (n * (n - 1)).sum() / (N + np.spacing(1)) / (N - 1 + np.spacing(1))
# calculate ln
ln = K - ((1 - M / N) ** n).sum()
# return esr
return np.sqrt(ntss * ln)
class EventStructuralRatio(object):
def __init__(self, resolution) -> None:
self.resolution = resolution
self.accumulator = dv.Accumulator(resolution)
# set accumulator
self.accumulator.setMinPotential(-np.inf)
self.accumulator.setMaxPotential(np.inf)
self.accumulator.setEventContribution(1.0)
self.accumulator.setIgnorePolarity(True)
self.accumulator.setDecayFunction(dv.Accumulator.Decay.NONE)
def evalPerTimeInterval(self, data,
reference: str = "events",
interval: timedelta = timedelta(milliseconds=33)):
# slice data
slicer, score = kit.MonoCameraSlicer(), list()
slicer.doEveryTimeInterval(
reference, interval,
lambda data: score.append(self._calc_esr(data["events"].toEventStore()))
)
slicer.accept(data)
# return result
return np.array(score)
def evalPerNumberInterval(self, data,
reference: str = "events",
interval: int = 30000):
# slice data
slicer, score = kit.MonoCameraSlicer(), list()
slicer.doEveryNumberOfElements(
reference, interval,
lambda data: score.append(self._calc_esr(data["events"].toEventStore()))
)
slicer.accept(data)
# return result
return np.array(score)
def evalEventStorePerTime(self, events: dv.EventStore,
interval: timedelta = timedelta(milliseconds=33)):
# slice data
slicer, score = dv.EventStreamSlicer(), list()
slicer.doEveryTimeInterval(
interval,
lambda events: score.append(self._calc_esr(events))
)
slicer.accept(events)
# return result
return np.array(score)
def evalEventStorePerNumber(self, events: dv.EventStore,
interval: int = 30000):
# slice data
slicer, score = dv.EventStreamSlicer(), list()
slicer.doEveryNumberOfEvents(
interval,
lambda events: score.append(self._calc_esr(events))
)
slicer.accept(events)
# return result
return np.array(score)
def _calc_esr(self, events):
self.accumulator.clear()
self.accumulator.accept(events)
# get basic info
n = self.accumulator.getPotentialSurface()
N, M = events.size(), int(events.size() * 2 / 3)
K = self.resolution[0] * self.resolution[1] # n.size
# calculate ntss
ntss = (n * (n - 1)).sum() / (N + np.spacing(1)) / (N - 1 + np.spacing(1))
# calculate ln
ln = K - ((1 - M / N) ** n).sum()
# return esr
return np.sqrt(ntss * ln)