-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify.py
46 lines (43 loc) · 2.03 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import sys
import os
import textgrid
import numpy as np
def linear_classifier(X):
return X["word-number"] > 1 and X["duration"] > 1 and X["mfa_found"] == 1 and X["hnr"] > 5.4 and X["alignment-diff"] < 0.03
OUTPUT_DIR = "out_with_labels"
uts = 0
good_uts = 0
for i, arg in enumerate(sys.argv[1:]):
if not os.path.isfile(arg):
print("{} is not a valid file".format(arg))
arg_grid = textgrid.TextGrid(name=arg.split("/")[-1])
arg_grid.read(arg)
classification = textgrid.IntervalTier(name="classification", minTime=arg_grid.minTime, maxTime=arg_grid.maxTime)
word = arg_grid[arg_grid.getNames().index("word")]
hnr_quality = arg_grid[arg_grid.getNames().index("hnr")]
mfa_found = arg_grid[arg_grid.getNames().index("mfa_found")]
for utterance in arg_grid[arg_grid.getNames().index("quality")]:
bounds = slice(word.indexContaining(float(utterance.minTime)+0.001), \
word.indexContaining(float(utterance.maxTime)-0.001) + 1)
hnr_index = hnr_quality.indexContaining(utterance.minTime + utterance.duration()/2)
mfa_index = mfa_found.indexContaining(utterance.minTime + utterance.duration()/2)
if utterance.mark != "":
X = {"duration": float(utterance.duration()),
"alignment-diff": float(utterance.mark),
"hnr": float(hnr_quality[hnr_index].mark),
"mfa_found": float(mfa_found[mfa_index].mark),
"word-number": len(word[bounds])}
if X["duration"] > 1 and X["word-number"] > 1:
uts += 1
try:
if linear_classifier(X):
good_uts += 1
y = "good"
else:
y = "bad"
except ValueError:
y = "bad"
classification.add(utterance.minTime, utterance.maxTime, y)
arg_grid.append(classification)
arg_grid.write(f"{OUTPUT_DIR}/{arg_grid.name.split('.TextGrid')[0]}_labeled.TextGrid")
print(f"Good utterances over total {good_uts}/{uts}")