-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreate_HCI_test_data.py
69 lines (41 loc) · 1.4 KB
/
create_HCI_test_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import scipy.io as sc
import h5py
import matplotlib.pyplot as plt
import os
from scipy.ndimage import gaussian_filter
from file_io import get_dataset_as_type
data_source = "/home/mz/HD_data/SR_data_backups/HCI LF/gantry/"
# data = sc.loadmat(data_path)
name_file = '/lf.h5'
data_folders = []
# data_folders.append('buddha')
# data_folders.append('buddha2')
# data_folders.append('horses')
# data_folders.append('medieval')
# data_folders.append('monasRoom')
# data_folders.append('papillon')
# data_folders.append('stillLife')
data_folders.append('couple')
data_folders.append('cube')
data_folders.append('pyramide')
data_folders.append('statue')
data_folders.append('transparency')
test_data_dir = "/home/mz/HD_data/SR_data_backups/HCI test/"
test_data_filename = 'lf_test_HCI_'
scale = 4
nviews = 9
size = 1024
for i in range(0,len(data_folders)):
data_path = os.path.join(data_source, data_folders[i]) + name_file
f = h5py.File(data_path, 'r')
# testf = f['LF']
# LF = get_dataset_as_type(f['LF'], dtype='float32')
LF_temp = f['LF'].value
LF_temp = LF_temp.astype(np.float32) / 255.0
LF_temp = np.flip(LF_temp, axis=1)
file = h5py.File(test_data_dir + test_data_filename + data_folders[i] + '.hdf5', 'w')
print('generating LF file %s' %data_folders[i])
dset_LF = file.create_dataset('LF', data=LF_temp)
# next dataset
print(' done.')