-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
384 lines (291 loc) · 15.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os
import sys
import datetime
import yaml
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import MultiStepLR
from tensorboardX import SummaryWriter
from parse_args import Parse
from models.models_import import create_model_object
from datasets.loading_function import data_loader
from losses import Losses
from metrics import Metrics
from checkpoint import save_checkpoint, load_checkpoint
import pprint
import wandb
def train(**args):
"""
Evaluate selected model
Args:
rerun (Int): Integer indicating number of repetitions for the select experiment
seed (Int): Integer indicating set seed for random state
save_dir (String): Top level directory to generate results folder
model (String): Name of selected model
dataset (String): Name of selected dataset
exp (String): Name of experiment
debug (Int): Debug state to avoid saving variables
load_type (String): Keyword indicator to evaluate the testing or validation set
pretrained (Int/String): Int/String indicating loading of random, pretrained or saved weights
opt (String): Int/String indicating loading of random, pretrained or saved weights
lr (Float): Learning rate
momentum (Float): Momentum in optimizer
weight_decay (Float): Weight_decay value
final_shape ([Int, Int]): Shape of data when passed into network
Return:
None
"""
print("Experimental Setup: ")
pprint.PrettyPrinter(indent=4).pprint(args)
for total_iteration in range(args['rerun']):
# Generate Results Directory
d = datetime.datetime.today()
date = d.strftime('%Y%m%d-%H%M%S')
result_dir = os.path.join(args['save_dir'], args['model'], '_'.join((args['dataset'],args['exp'],date)))
log_dir = os.path.join(result_dir, 'logs')
save_dir = os.path.join(result_dir, 'checkpoints')
run_id = args['exp']
use_wandb = args.get('use_wandb', False)
if not args['debug']:
if use_wandb:
wandb.init(project=args['dataset'], name=args['exp'], config=args, tags=args['tags'])
#Replace result dir with wandb unique id, much easier to find checkpoints
run_id = wandb.run.id
if run_id:
result_dir = os.path.join(args['save_dir'], args['model'], '_'.join((args['dataset'], run_id)))
log_dir = os.path.join(result_dir, 'logs')
save_dir = os.path.join(result_dir, 'checkpoints')
os.makedirs(result_dir, exist_ok=True)
os.makedirs(log_dir, exist_ok=True)
os.makedirs(save_dir, exist_ok=True)
# Save copy of config file
with open(os.path.join(result_dir, 'config.yaml'),'w') as outfile:
yaml.dump(args, outfile, default_flow_style=False)
# Tensorboard Element
writer = SummaryWriter(log_dir)
# Check if GPU is available (CUDA)
num_gpus = args['num_gpus']
device = torch.device("cuda:0" if num_gpus > 0 and torch.cuda.is_available() else "cpu")
print('Using {}'.format(device.type))
# Load Network
model = create_model_object(**args).to(device)
model_obj = model
if device.type == 'cuda' and num_gpus > 1:
device_ids = list(range(num_gpus)) #number of GPUs specified
model = nn.DataParallel(model, device_ids=device_ids)
model_obj = model.module #Model from DataParallel object has to be accessed through module
print('GPUs Device IDs: {}'.format(device_ids))
# Load Data
loader = data_loader(model_obj=model_obj, **args)
if args['load_type'] == 'train':
train_loader = loader['train']
valid_loader = loader['train'] # Run accuracy on train data if only `train` selected
elif args['load_type'] == 'train_val':
train_loader = loader['train']
valid_loader = loader['valid']
else:
sys.exit('Invalid environment selection for training, exiting')
# Training Setup
params = [p for p in model.parameters() if p.requires_grad]
if args['model'] == 'Hand':
named_params = [(n,p) for (n,p) in model.named_parameters() if p.requires_grad]
group0_params = []
group0_bias_params = []
group1_params = []
group1_bias_params = []
for n,p in named_params:
if 'model1_0' in n:
if 'bias' in n:
group0_bias_params.append(p)
else:
group0_params.append(p)
else:
if 'bias' in n:
group1_bias_params.append(p)
else:
group1_params.append(p)
params = [{'params': group0_params}, {'params': group0_bias_params, 'lr': 2*args['lr']},
{'params': group1_params, 'lr': 4*args['lr']}, {'params': group1_bias_params, 'lr': 8*args['lr']}
]
elif args['model'] == 'FlowTrack_R' or \
args['model'] == 'FlowTrack_R_GT': #Set the learning rate of layer1.conv1 to be higher than others
names = [n for (n,p) in model.named_parameters() if p.requires_grad]
named_params = [(n,p) for (n,p) in model.named_parameters() if p.requires_grad]
group0_params = []
group1_params = []
for n,p in named_params:
if n == 'layer1.0.conv1.weight':
group0_params.append(p)
else:
group1_params.append(p)
params = [{'params': group0_params}, {'params': group1_params, 'lr': 0.1*args['lr']}]
if args['opt'] == 'sgd':
optimizer = optim.SGD(params, lr=args['lr'], momentum=args['momentum'], weight_decay=args['weight_decay'], nesterov=True)
elif args['opt'] == 'adam':
optimizer = optim.Adam(params, lr=args['lr'], weight_decay=args['weight_decay'])
else:
sys.exit('Unsupported optimizer selected. Exiting')
scheduler = MultiStepLR(optimizer, milestones=args['milestones'], gamma=args['gamma'])
if isinstance(args['pretrained'], str):
ckpt = load_checkpoint(args['pretrained'])
ckpt_keys = list(ckpt.keys())
if ckpt_keys[0].startswith('module.'): #if checkpoint weights are from DataParallel object
for key in ckpt_keys:
ckpt[key[7:]] = ckpt.pop(key)
models_to_modify = ['FlowTrack_R', 'FlowTrack_R_V2', 'FlowTrack_R_GT', 'FlowTrack_R_GT_No_Aug', 'FlowTrack_R_GT_V2']
if args['model'] in models_to_modify:
idx = args['hm_to_layer']
layers_to_remove = ['layer'+str(idx)+'.0.conv1.weight', 'layer'+str(idx)+'.0.downsample.0.weight']
for l in layers_to_remove:
if ckpt[l].shape[1] != model_obj.state_dict()[l].shape[1]: #initialize last few channels with zeros, but leave remaining weights
del ckpt[l]
model_obj.load_state_dict(ckpt, strict=False)
if args['resume']:
start_epoch = load_checkpoint(args['pretrained'], key_name='epoch') + 1
optimizer.load_state_dict(load_checkpoint(args['pretrained'], key_name='optimizer'))
for _ in range(start_epoch):
scheduler.step()
else:
start_epoch = 0
else:
start_epoch = 0
model_loss = Losses(device=device, **args)
best_val_acc = 0.0
# Start: Training Loop
print('Starting Schedulers lr: {}'.format(scheduler.get_last_lr()[0]))
for epoch in range(start_epoch, args['epoch']):
acc_metric = Metrics(**args, ndata=len(train_loader.dataset), logger=wandb if use_wandb else None)
running_loss = 0.0
print('Epoch: ', epoch)
# Setup Model To Train
model.train()
if args['model'] == 'FlowTrack_r_gt_v5_linear':
if num_gpus > 1:
model.module.update_epoch(epoch)
else:
model.update_epoch(epoch)
# Start: Epoch
for step, data in enumerate(train_loader):
if step% args['pseudo_batch_loop'] == 0:
loss = 0.0
running_batch = 0
optimizer.zero_grad()
x_input = data['data']
annotations = data['annots']
if isinstance(x_input, torch.Tensor):
mini_batch_size = x_input.shape[0]
outputs = model(x_input.to(device))
assert args['final_shape']==list(x_input.size()[-2:]), "Input to model does not match final_shape argument"
else: #Model takes several inputs in forward function
mini_batch_size = x_input[0].shape[0] #Assuming the first element contains the true data input
for i, item in enumerate(x_input):
if isinstance(item, torch.Tensor):
x_input[i] = item.to(device)
outputs = model(*x_input)
loss = model_loss.loss(outputs, annotations)
loss = loss * mini_batch_size
loss.backward()
running_loss += loss.item()
running_batch += mini_batch_size
if np.isnan(running_loss):
import pdb; pdb.set_trace()
if not args['debug']:
# Add Learning Rate Element
for param_group in optimizer.param_groups:
if use_wandb:
wandb.log({'lr':param_group['lr'],'train loss':loss.item()/mini_batch_size})
writer.add_scalar(args['dataset']+'/'+args['model']+'/learning_rate', param_group['lr'], epoch*len(train_loader) + step)
# Add Training Loss Element
writer.add_scalar(args['dataset']+'/'+args['model']+'/minibatch_loss', loss.item()/mini_batch_size, epoch*len(train_loader) + step)
#Compute and Log Training Accuracy
with torch.no_grad():
# Add Training Accuracy Element
acc = acc_metric.get_accuracy(outputs, annotations)
if use_wandb:
wandb.log({'train accuracy':acc.item()})
if ((epoch*len(train_loader) + step+1) % 100 == 0):
print('Epoch: {}/{}, step: {}/{} | train loss: {:.5f}'.format(epoch, args['epoch'], step+1, len(train_loader), running_loss/float(step+1)/mini_batch_size))
if (epoch * len(train_loader) + (step+1)) % args['pseudo_batch_loop'] == 0 and step > 0:
# Apply large mini-batch normalization
for param in model.parameters():
if param.requires_grad and param.grad is not None:
param.grad *= 1./float(running_batch)
# Apply gradient clipping
if ("grad_max_norm" in args) and float(args['grad_max_norm'] > 0):
nn.utils.clip_grad_norm_(model.parameters(),float(args['grad_max_norm']))
optimizer.step()
running_batch = 0
scheduler.step()
print('Schedulers lr: {}'.format(scheduler.get_last_lr()[0]))
''' #For now, avoid saving every checkpoint
if not args['debug']:
# Save Current Model
save_path = os.path.join(save_dir, args['dataset']+'_epoch'+str(epoch)+'.pkl')
save_checkpoint(epoch, step, model, optimizer, save_path)
print('Saved checkpoint to: {}'.format(save_path))
'''
prior_track_models = ['FlowTrack_r_gt_v5_no_max','FlowTrack_r_gt_v5_linear']
if not args['debug'] and args['model'] in prior_track_models:
if use_wandb:
wandb.log({'epoch':epoch, 'pred_to_prior': model.use_pred/model.total_priors})
print('total_priors: {}, use_gt: {}, use_pred: {}'.format(model.total_priors, model.use_gt, model.use_pred))
## START FOR: Validation Accuracy
running_acc = []
running_acc = valid(valid_loader, running_acc, model, model_loss, device)
if args['model'] in prior_track_models:
model.reset_vals() #Reset the values for tracking usage of predictions priors or gt priors
if not args['debug']:
if use_wandb:
wandb.log({'epoch':epoch, 'val accuracy':running_acc[-1]})
writer.add_scalar(args['dataset']+'/'+args['model']+'/validation_accuracy', 100.*running_acc[-1], epoch*len(train_loader) + step)
# Save Latest Model
save_path = os.path.join(save_dir, args['dataset']+'_latest_model.pkl')
save_checkpoint(epoch, step, model, optimizer, save_path)
print('Lastest val accuracy checkpoint saved to: {}'.format(save_path))
print('Accuracy of the network on the validation set: %f %%\n' % (100.*running_acc[-1]))
# Save Best Validation Accuracy Model Separately
if best_val_acc < running_acc[-1]:
best_val_acc = running_acc[-1]
if not args['debug']:
#Log best validation accuracy
if use_wandb:
wandb.run.summary['best_accuracy'] = best_val_acc
# Save Current Model
save_path = os.path.join(save_dir, args['dataset']+'_best_model.pkl')
save_checkpoint(epoch, step, model, optimizer, save_path)
print('Best val accuracy checkpoint saved to: {}'.format(save_path))
if not args['debug']:
# Close Tensorboard Element
writer.close()
def valid(valid_loader, running_acc, model, model_loss, device):
running_loss = 0.
acc_metric = Metrics(**args, ndata=len(valid_loader.dataset), logger=wandb if use_wandb else None)
model.eval()
with torch.no_grad():
for step, data in enumerate(valid_loader):
x_input = data['data']
annotations = data['annots']
if isinstance(x_input, torch.Tensor):
mini_batch_size = x_input.shape[0]
outputs = model(x_input.to(device))
else:
mini_batch_size = x_input[0].shape[0] #Assuming the first element contains the true data input
for i, item in enumerate(x_input):
if isinstance(item, torch.Tensor):
x_input[i] = item.to(device)
outputs = model(*x_input)
running_acc.append(acc_metric.get_accuracy(outputs, annotations))
if step % 100 == 0:
print('Step: {}/{} | validation acc: {:.4f}'.format(step, len(valid_loader), running_acc[-1]))
return running_acc
if __name__ == "__main__":
parse = Parse()
args = parse.get_args()
# For reproducibility
torch.backends.cudnn.deterministic = True
torch.manual_seed(args['seed'])
if not args['resume']:
np.random.seed(args['seed'])
train(**args)