-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbuild_oneprompt.py
139 lines (124 loc) · 3.83 KB
/
build_oneprompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from functools import partial
from pathlib import Path
import urllib.request
import torch
from collections import OrderedDict
from .modeling import (
OnePrompt,
OnePromptDecoder,
PromptEncoder,
OnePromptEncoderViT,
OnePromptEncoderUnet,
CrossAttentionBlock,
)
def build_one_vit_h(args = None, checkpoint=None):
return _build_one(
args,
encoder_embed_dim=1280,
encoder_depth=32,
encoder_num_heads=16,
encoder_global_attn_indexes=[7, 15, 23, 31],
checkpoint=checkpoint,
)
def build_one_vit_l(args, checkpoint=None):
return _build_one(
args,
encoder_embed_dim=1024,
encoder_depth=24,
encoder_num_heads=16,
encoder_global_attn_indexes=[5, 11, 17, 23],
checkpoint=checkpoint,
)
def build_one_vit_b(args, checkpoint=None):
return _build_one(
args,
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_global_attn_indexes=[2, 5, 8, 11],
checkpoint=checkpoint,
)
def build_one_unet(args, checkpoint=None):
return _build_one(
args,
encoder_embed_dim=256,
encoder_depth=4,
encoder_num_heads=12,
encoder_global_attn_indexes=[2, 5, 8, 11],
checkpoint=checkpoint,
)
one_model_registry = {
"default": build_one_vit_h,
"unet": build_one_unet,
"vit_h": build_one_vit_h,
"vit_l": build_one_vit_l,
"vit_b": build_one_vit_b,
}
def _build_one(
args,
encoder_embed_dim,
encoder_depth,
encoder_num_heads,
encoder_global_attn_indexes,
checkpoint=None,
):
prompt_embed_dim = args.dim
image_size = args.image_size
vit_patch_size = args.patch_size
image_embedding_size = image_size // vit_patch_size
one = OnePrompt(
args,
image_encoder= OnePromptEncoderUnet(
input_channels = 3,
base_num_features = encoder_embed_dim // 2,
final_num_features = encoder_embed_dim,
fea_size=image_embedding_size,
num_pool = encoder_depth,
) if args.baseline == 'unet' else
OnePromptEncoderViT(
args = args,
depth=encoder_depth,
embed_dim=encoder_embed_dim,
img_size=image_size,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=encoder_num_heads,
patch_size=vit_patch_size,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=encoder_global_attn_indexes,
window_size=14,
),
prompt_encoder=PromptEncoder(
embed_dim=prompt_embed_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
),
mask_decoder=OnePromptDecoder(
depth = 4,
prompt_embed_dim = prompt_embed_dim,
embed_dim = encoder_embed_dim,
out_chans=prompt_embed_dim,
token_num = int(image_embedding_size * image_embedding_size),
patch_size = vit_patch_size,
mlp_dim = 256,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
one.eval()
if checkpoint is not None:
checkpoint = Path(checkpoint)
with open(checkpoint, "rb") as f:
state_dict = torch.load(f)
if args.image_size != 1024:
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if "image_encoder.patch_embed" not in k:
new_state_dict[k] = v
# load params
else:
new_state_dict = state_dict
one.load_state_dict(new_state_dict, strict = False)
return one