-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathrun_test_recommenders.py
179 lines (110 loc) · 5.77 KB
/
run_test_recommenders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on 22/11/2018
@author: Maurizio Ferrari Dacrema
"""
import traceback, os, shutil
from Recommenders.BaseCBFRecommender import BaseItemCBFRecommender, BaseUserCBFRecommender
from Evaluation.Evaluator import EvaluatorHoldout, EvaluatorNegativeItemSample
from Data_manager.Movielens.Movielens1MReader import Movielens1MReader
from Data_manager.DataSplitter_leave_k_out import DataSplitter_leave_k_out
from Recommenders.Incremental_Training_Early_Stopping import Incremental_Training_Early_Stopping
def write_log_string(log_file, string):
log_file.write(string)
log_file.flush()
def _get_instance(recommender_class, URM_train, ICM_all, UCM_all):
if issubclass(recommender_class, BaseItemCBFRecommender):
recommender_object = recommender_class(URM_train, ICM_all)
elif issubclass(recommender_class, BaseUserCBFRecommender):
recommender_object = recommender_class(URM_train, UCM_all)
else:
recommender_object = recommender_class(URM_train)
return recommender_object
def run_recommender(recommender_class):
temp_save_file_folder = "./result_experiments/__temp_model/"
if not os.path.isdir(temp_save_file_folder):
os.makedirs(temp_save_file_folder)
try:
dataset_object = Movielens1MReader()
dataSplitter = DataSplitter_leave_k_out(dataset_object, k_out_value=2)
dataSplitter.load_data()
URM_train, URM_validation, URM_test = dataSplitter.get_holdout_split()
ICM_all = dataSplitter.get_loaded_ICM_dict()["ICM_genres"]
UCM_all = dataSplitter.get_loaded_UCM_dict()["UCM_all"]
write_log_string(log_file, "On Recommender {}\n".format(recommender_class))
recommender_object = _get_instance(recommender_class, URM_train, ICM_all, UCM_all)
if isinstance(recommender_object, Incremental_Training_Early_Stopping):
fit_params = {"epochs": 15}
else:
fit_params = {}
recommender_object.fit(**fit_params)
write_log_string(log_file, "Fit OK, ")
evaluator = EvaluatorHoldout(URM_test, [5], exclude_seen = True)
results_df, results_run_string = evaluator.evaluateRecommender(recommender_object)
write_log_string(log_file, "EvaluatorHoldout OK, ")
evaluator = EvaluatorNegativeItemSample(URM_test, URM_train, [5], exclude_seen = True)
_, _ = evaluator.evaluateRecommender(recommender_object)
write_log_string(log_file, "EvaluatorNegativeItemSample OK, ")
items_to_compute_not_sorted = np.random.randint(0,URM_train.shape[1], size = 300)
items_to_compute_sorted = np.sort(items_to_compute_not_sorted)
for user_id in range(URM_train.shape[0]):
recommendations_sorted, scores_sorted = recommender_object.recommend(user_id, cutoff = 50, items_to_compute = items_to_compute_sorted, return_scores = True)
recommendations_not_sorted, scores_not_sorted = recommender_object.recommend(user_id, cutoff = 50, items_to_compute = items_to_compute_not_sorted, return_scores = True)
# try:
assert np.equal(recommendations_sorted, recommendations_not_sorted).all()
assert np.allclose(scores_sorted, scores_not_sorted, atol=1e-5)
scores_sorted[0,items_to_compute_sorted] = -np.inf
assert np.isinf(scores_sorted).all()
# except:
# # np.where(np.logical_not(scores_sorted == scores_not_sorted))[1]
# pass
write_log_string(log_file, "items_to_compute in the right order OK, ")
recommender_object.save_model(temp_save_file_folder, file_name="temp_model")
write_log_string(log_file, "save_model OK, ")
recommender_object = _get_instance(recommender_class, URM_train, ICM_all, UCM_all)
recommender_object.load_model(temp_save_file_folder, file_name="temp_model")
evaluator = EvaluatorHoldout(URM_test, [5], exclude_seen = True)
result_df_load, results_run_string_2 = evaluator.evaluateRecommender(recommender_object)
print(results_run_string)
print(results_run_string_2)
assert results_df.equals(result_df_load), "The results of the original model should be equal to that of the loaded one"
write_log_string(log_file, "load_model OK, ")
from Recommenders.DataIO import DataIO
dataIO = DataIO(temp_save_file_folder)
data = dataIO.load_data("temp_model.zip")
shutil.rmtree(temp_save_file_folder, ignore_errors = True)
write_log_string(log_file, " PASS\n")
write_log_string(log_file, results_run_string + "\n\n")
except Exception as e:
print("On Recommender {} Exception {}".format(recommender_class, str(e)))
log_file.write("On Recommender {} Exception {}\n\n\n".format(recommender_class, str(e)))
log_file.flush()
traceback.print_exc()
from Recommenders.Recommender_import_list import *
if __name__ == '__main__':
log_file_name = "./result_experiments/run_test_recommender.txt"
recommender_list = [
Random,
TopPop,
GlobalEffects,
UserKNNCFRecommender,
ItemKNNCFRecommender,
ItemKNNCBFRecommender,
P3alphaRecommender,
RP3betaRecommender,
SLIM_BPR_Cython,
SLIMElasticNetRecommender,
MatrixFactorization_BPR_Cython,
MatrixFactorization_FunkSVD_Cython,
MatrixFactorization_AsySVD_Cython,
PureSVDRecommender,
IALSRecommender,
EASE_R_Recommender,
]
log_file = open(log_file_name, "w")
for recommender_class in recommender_list:
run_recommender(recommender_class)
#
# pool = multiprocessing.Pool(processes=int(multiprocessing.cpu_count()), maxtasksperchild=1)
# resultList = pool.map(run_dataset, dataset_list)