-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflag.py
370 lines (281 loc) · 12.5 KB
/
flag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
#!/usr/bin/env python3
# Author: Mateusz Janda <mateusz janda at gmail com>
# Site: github.com/MateuszJanda/physics-simulations
# Ad maiorem Dei gloriam
import math
import vpython as vp
from itertools import chain
import random
# import povexport
NUM_COLUMNS = 10
NUM_ROWS = 7
GRAVITY_ACC = -9.81 # [m/s^2]
CLOTH_MASS = 15 # [kg]
CLOTH_WIDTH = 10 # [m]
CLOTH_HEIGHT = 7 # [m]
FLAG_POLE_HEIGHT = 15 # [m]
FLAG_POLE_RADIUS = 0.1 # [m]
SEAM_RADIUS = 0.05 # [m]
AIR_DENSITY = 1.225 # [kg/m^3]
SPRING_DAMPING_CONSTANT = 2 # [kg/s]
SPRING_TENSION_CONSTANT = 500 # [kg/s^2]
SPRING_SHEAR_CONSTANT = 600 # [kg/s^2]
DRAG_COEFFICIENT = 0.01
E_RESTITUTION = 0.25
COLLISION_TOLERANCE = 0.05 # [m]
VELOCITY_TOLERANCE = 0.0001 # [m/s^2]
WIND_FACTOR = 30
class Particle:
def __init__(self, mass, pos, surface, locked):
self.locked = locked
self.mass = mass # [kg]
self.surface = surface # [m^2]
# Set initial position of this particle
self.pos = pos
# Set initial velocity, acceleration and force to zero
self.vel = vp.vector(0, 0, 0) # [m/s]
self.acc = vp.vector(0, 0, 0) # [m/s^2]
self.force = vp.vector(0, 0, 0) # [N]
class StructuralSpring():
"""
k - spring constant [kg/s^2]
d - damping coefficient [kg/s]
length - (normal) length of unstretched spring [m]
"""
def __init__(self, particle1, particle2, k):
self.particle1 = particle1
self.particle2 = particle2
self.length = (particle1.pos - particle2.pos).mag # [m]
self.k = k # [kg/s^2]
self.d = SPRING_DAMPING_CONSTANT # [kg/s]
class Collision():
def __init__(self, particle, normal):
self.particle = particle
self.normal = normal
class Seam():
def __init__(self):
self.horiz = None
self.vertic = None
def main():
scene = setup_display()
pole1 = create_pole(x=-10)
pole2 = create_pole(x=2)
particles1 = create_particles(pole1)
particles2 = create_particles(pole2)
flag1 = create_skeleton(particles1)
flag2 = create_flag(particles2)
struct_springs1 = create_structural_springs(particles1)
struct_springs2 = create_structural_springs(particles2)
t = 0
freq = 100
dt = 1/freq
frame = 0
while True:
vp.rate(freq)
seed = random.randrange(6500)
# Update skeleton object's geometry
random.seed(seed)
step_simulation(dt, particles1, struct_springs1, flag1)
update_skeleton_geometry(particles1, flag1)
# Update flag object's geometry
random.seed(seed)
step_simulation(dt, particles2, struct_springs2, flag2)
update_flag_geometry(particles2, flag2)
# povexport.export(scene, filename='img-%04d.pov' % frame,
# include_list=['colors.inc', 'stones.inc', 'woods.inc', 'metals.inc'])
frame += 1
t += dt
def setup_display():
scene = vp.canvas(x=0, y=0, width=500, height=400,
userzoom=False, userspin=True, autoscale=False,
center=vp.vector(1, 8, 0), foreground=vp.color.white, background=vp.color.black)
return scene
def create_particles(pole):
particles = [[0 for y in range(NUM_COLUMNS)] for x in range(NUM_ROWS)]
column_step = CLOTH_WIDTH/NUM_COLUMNS
row_step = CLOTH_HEIGHT/NUM_ROWS
y_offset = FLAG_POLE_HEIGHT - CLOTH_HEIGHT
all_faces = 4*1 + 2*(NUM_ROWS-2)*2 + 2*(NUM_COLUMNS-2)*2 + (NUM_ROWS-2)*(NUM_COLUMNS-2)*4
mass_per_face = CLOTH_MASS/all_faces # [kg]
surface_per_face = (CLOTH_WIDTH/(NUM_ROWS*4)) * (CLOTH_HEIGHT/(NUM_COLUMNS*4)) # [m^2]
for r in range(NUM_ROWS):
for c in range(NUM_COLUMNS):
if r == 0 and (c == 0 or c == NUM_COLUMNS-1):
faces = 1
elif r == NUM_ROWS-1 and (c == 0 or c == NUM_COLUMNS-1):
faces = 1
elif r == 0 or r == NUM_ROWS-1 or c == 0 or c == NUM_COLUMNS-1:
faces = 2
else:
faces = 4
particles[r][c] = Particle(
mass=faces*mass_per_face,
pos=vp.vector(pole.pos.x + c*column_step, (CLOTH_HEIGHT - (r*row_step)) + y_offset, 0),
surface=faces*surface_per_face,
locked=((c == 0) and (r == 0 or r == NUM_ROWS-1)))
particles[r][c].faces = faces
print('Units:')
for rp in particles:
print(' '.join([str(p.faces) for p in rp]))
units = sum([p.faces for p in chain.from_iterable(particles)])
print('Units sum: ', units)
print('Mass per unit: ', CLOTH_MASS/units)
print('Mass sum: ', sum([p.mass for p in chain.from_iterable(particles)]))
return particles
def create_structural_springs(particles):
# Setup the structural springs
# Connect springs between each adjacent vertex
struct_springs = []
for r in range(NUM_ROWS):
for c in range(NUM_COLUMNS):
if c < NUM_COLUMNS-1:
struct_springs.append(StructuralSpring(
particle1=particles[r][c],
particle2=particles[r][c+1],
k=SPRING_TENSION_CONSTANT))
if r < NUM_ROWS-1:
struct_springs.append(StructuralSpring(
particle1=particles[r][c],
particle2=particles[r+1][c],
k=SPRING_TENSION_CONSTANT))
if c < NUM_COLUMNS-1 and r < NUM_ROWS-1:
struct_springs.append(StructuralSpring(
particle1=particles[r][c],
particle2=particles[r+1][c+1],
k=SPRING_SHEAR_CONSTANT))
if c > 0 and r < NUM_ROWS-1:
struct_springs.append(StructuralSpring(
particle1=particles[r][c],
particle2=particles[r+1][c-1],
k=SPRING_SHEAR_CONSTANT))
return struct_springs
def create_pole(x=-2):
pole = vp.cylinder(pos=vp.vector(x, 0, 0), axis=vp.vector(0, FLAG_POLE_HEIGHT, 0), radius=FLAG_POLE_RADIUS)
return pole
def create_skeleton(particles):
flag = [[Seam() for y in range(NUM_COLUMNS)] for x in range(NUM_ROWS)]
for r in range(NUM_ROWS):
for c in range(NUM_COLUMNS):
seam = flag[r][c]
if r+1 < NUM_ROWS and c+1 < NUM_COLUMNS:
seam.horiz = vp.cylinder(pos=particles[r][c].pos,
axis=particles[r+1][c].pos - particles[r][c].pos, radius=SEAM_RADIUS)
seam.vertic = vp.cylinder(pos=particles[r][c].pos,
axis=particles[r][c+1].pos - particles[r][c].pos, radius=SEAM_RADIUS)
elif r+1 < NUM_ROWS:
seam.horiz = vp.cylinder(pos=particles[r][c].pos,
axis=particles[r+1][c].pos - particles[r][c].pos, radius=SEAM_RADIUS)
elif c+1 < NUM_COLUMNS:
seam.vertic = vp.cylinder(pos=particles[r][c].pos,
axis=particles[r][c+1].pos - particles[r][c].pos, radius=SEAM_RADIUS)
return flag
def create_flag(particles):
flag = [[Seam() for y in range(NUM_COLUMNS)] for x in range(NUM_ROWS)]
for r in range(NUM_ROWS):
for c in range(NUM_COLUMNS):
seam = flag[r][c]
if r+1 < NUM_ROWS and c+1 < NUM_COLUMNS:
if r >= NUM_ROWS // 2:
color = vp.color.red
else:
color = vp.color.white
seam.tr1 = vp.triangle(v0=vp.vertex(pos=particles[r][c].pos, color=color),
v1=vp.vertex(pos=particles[r][c+1].pos, color=color),
v2=vp.vertex(pos=particles[r+1][c+1].pos, color=color))
seam.tr2 = vp.triangle(v0=vp.vertex(pos=particles[r][c].pos, color=color),
v1=vp.vertex(pos=particles[r+1][c+1].pos, color=color),
v2=vp.vertex(pos=particles[r+1][c].pos, color=color))
return flag
def step_simulation(dt, particles, struct_springs, flag):
# Calculate all of the forces
calc_forces(particles, struct_springs)
# Integrate
for particle in chain.from_iterable(particles):
particle.acc = particle.force / particle.mass
particle.vel += particle.acc * dt
particle.pos += particle.vel * dt
# Check for collisions
collisions = check_for_collisions(particles)
resolve_collisions(collisions)
def calc_forces(particles, struct_springs):
# Process gravity and drag forces
for particle in chain.from_iterable(particles):
if particle.locked:
continue
# Gravity
particle.force = vp.vector(0, GRAVITY_ACC * particle.mass, 0)
# Viscous drag - page 17. Surface without rotation calculation.
# https://pl.wikipedia.org/wiki/Op%C3%B3r_aero(hydro)dynamiczny#Formu%C5%82y_na_wielko%C5%9B%C4%87_oporu_aero(hydro)dynamicznego
drag_vector = -vp.norm(particle.vel)
particle.force += drag_vector * DRAG_COEFFICIENT * AIR_DENSITY * 0.5 \
* particle.vel.mag2 * particle.surface
# Wind force
particle.force += wind_force()
# Process spring forces - page 82
for spring in struct_springs:
l = spring.particle1.pos - spring.particle2.pos
relative_vel = spring.particle1.vel - spring.particle2.vel
f1 = -(spring.k * (l.mag - spring.length) + spring.d * (vp.dot(relative_vel, l)/l.mag)) * l.norm()
f2 = -f1
if not spring.particle1.locked:
spring.particle1.force += f1
if not spring.particle2.locked:
spring.particle2.force += f2
def wind_force():
f = vp.norm(vp.vector(random.randrange(10, 25), 0, random.randrange(-15, 12))) * random.randrange(WIND_FACTOR)
return f
def check_for_collisions(particles):
collisions = []
for particle in chain.from_iterable(particles):
if particle.locked:
continue
# Check for collisions with ground
if (particle.pos.y <= COLLISION_TOLERANCE) and (particle.vel.y < VELOCITY_TOLERANCE):
collisions.append(Collision(particle=particle, normal=vp.norm(vp.vector(0, 1, 0))))
# Check for collisions with flag pole
# Center of mass of a pole is at the same height as particle. So distance (vector) between two
# mass centers will be also vector perpendicular to the edge of collision - page 248
dist = particle.pos - vp.vector(0, particle.pos.y, 0)
n = dist.norm()
relative_vel_n = vp.dot(particle.vel, n)
if dist.mag <= (FLAG_POLE_RADIUS + COLLISION_TOLERANCE) and \
(0 < particle.pos.y < FLAG_POLE_HEIGHT) and (relative_vel_n < VELOCITY_TOLERANCE):
collisions.append(Collision(particle=particle, normal=n))
return collisions
def resolve_collisions(collisions):
for c in collisions:
# Impulse - page 115
# https://en.wikipedia.org/wiki/Collision_response#Impulse-based_reaction_model
vel_relative = c.particle.vel
impluse = (-(E_RESTITUTION+1) * vp.dot(vel_relative, c.normal)) / (1/c.particle.mass)
c.particle.vel += (impluse*c.normal)/c.particle.mass
def update_skeleton_geometry(particles, flag):
# Update skeleton elements
for r in range(NUM_ROWS):
for c in range(NUM_COLUMNS):
seam = flag[r][c]
if r+1 < NUM_ROWS and c+1 < NUM_COLUMNS:
seam.horiz.pos = particles[r][c].pos
seam.horiz.axis = particles[r+1][c].pos - particles[r][c].pos
seam.vertic.pos = particles[r][c].pos
seam.vertic.axis = particles[r][c+1].pos - particles[r][c].pos
elif r+1 < NUM_ROWS:
seam.horiz.pos = particles[r][c].pos
seam.horiz.axis = particles[r+1][c].pos - particles[r][c].pos
elif c+1 < NUM_COLUMNS:
seam.vertic.pos = particles[r][c].pos
seam.vertic.axis = particles[r][c+1].pos - particles[r][c].pos
def update_flag_geometry(particles, flag):
# Update flag elements
for r in range(NUM_ROWS):
for c in range(NUM_COLUMNS):
seam = flag[r][c]
if r+1 < NUM_ROWS and c+1 < NUM_COLUMNS:
seam.tr1.v0.pos = particles[r][c].pos
seam.tr1.v1.pos = particles[r][c+1].pos
seam.tr1.v2.pos = particles[r+1][c+1].pos
seam.tr2.v0.pos = particles[r][c].pos
seam.tr2.v1.pos = particles[r+1][c+1].pos
seam.tr2.v2.pos = particles[r+1][c].pos
if __name__ == '__main__':
main()